Determinante di $$$\left[\begin{array}{c}- a^{2} g^{2} h^{2} m^{2} n^{2} r^{2} s^{2} t^{4} e^{2 e i n o r s^{2}} - \lambda\end{array}\right]$$$
Calcolatore correlato: Calcolatore della matrice dei cofattori
Il tuo input
Calcola $$$\left|\begin{array}{c}- a^{2} g^{2} h^{2} m^{2} n^{2} r^{2} s^{2} t^{4} e^{2 e i n o r s^{2}} - \lambda\end{array}\right|$$$.
Soluzione
Il determinante di una matrice 1x1 è $$$\left|\begin{array}{c}a\end{array}\right| = a$$$.
$$$\left|\begin{array}{c}- a^{2} g^{2} h^{2} m^{2} n^{2} r^{2} s^{2} t^{4} e^{2 e i n o r s^{2}} - \lambda\end{array}\right| = - a^{2} g^{2} h^{2} m^{2} n^{2} r^{2} s^{2} t^{4} e^{2 e i n o r s^{2}} - \lambda$$$
Risposta
$$$\left|\begin{array}{c}- a^{2} g^{2} h^{2} m^{2} n^{2} r^{2} s^{2} t^{4} e^{2 e i n o r s^{2}} - \lambda\end{array}\right| = - a^{2} g^{2} h^{2} m^{2} n^{2} r^{2} s^{2} t^{4} e^{2 e i n o r s^{2}} - \lambda$$$A