$$$\left[\begin{array}{c}- a^{2} g^{2} h^{2} m^{2} n^{2} r^{2} s^{2} t^{4} e^{2 e i n o r s^{2}} - \lambda\end{array}\right]$$$:n determinantti

Laskin laskee $$$1$$$x$$$1$$$-kokoisen neliömatriisin $$$\left[\begin{array}{c}- a^{2} g^{2} h^{2} m^{2} n^{2} r^{2} s^{2} t^{4} e^{2 e i n o r s^{2}} - \lambda\end{array}\right]$$$ determinantin vaiheittain.

Aiheeseen liittyvä laskin: Kofaktorimatriisilaskin

A

Jos laskin ei laskenut jotakin tai olet havainnut virheen tai sinulla on ehdotus tai palaute, ole hyvä ja ota meihin yhteyttä.

Syötteesi

Laske $$$\left|\begin{array}{c}- a^{2} g^{2} h^{2} m^{2} n^{2} r^{2} s^{2} t^{4} e^{2 e i n o r s^{2}} - \lambda\end{array}\right|$$$.

Ratkaisu

1x1-matriisin determinantti on $$$\left|\begin{array}{c}a\end{array}\right| = a$$$.

$$$\left|\begin{array}{c}- a^{2} g^{2} h^{2} m^{2} n^{2} r^{2} s^{2} t^{4} e^{2 e i n o r s^{2}} - \lambda\end{array}\right| = - a^{2} g^{2} h^{2} m^{2} n^{2} r^{2} s^{2} t^{4} e^{2 e i n o r s^{2}} - \lambda$$$

Vastaus

$$$\left|\begin{array}{c}- a^{2} g^{2} h^{2} m^{2} n^{2} r^{2} s^{2} t^{4} e^{2 e i n o r s^{2}} - \lambda\end{array}\right| = - a^{2} g^{2} h^{2} m^{2} n^{2} r^{2} s^{2} t^{4} e^{2 e i n o r s^{2}} - \lambda$$$A


Please try a new game Rotatly