Déterminant de $$$\left[\begin{array}{c}- a^{2} g^{2} h^{2} m^{2} n^{2} r^{2} s^{2} t^{4} e^{2 e i n o r s^{2}} - \lambda\end{array}\right]$$$
Calculatrice associée: Calculatrice de la matrice des cofacteurs
Votre saisie
Calculer $$$\left|\begin{array}{c}- a^{2} g^{2} h^{2} m^{2} n^{2} r^{2} s^{2} t^{4} e^{2 e i n o r s^{2}} - \lambda\end{array}\right|$$$.
Solution
Le déterminant d'une matrice 1x1 est $$$\left|\begin{array}{c}a\end{array}\right| = a$$$.
$$$\left|\begin{array}{c}- a^{2} g^{2} h^{2} m^{2} n^{2} r^{2} s^{2} t^{4} e^{2 e i n o r s^{2}} - \lambda\end{array}\right| = - a^{2} g^{2} h^{2} m^{2} n^{2} r^{2} s^{2} t^{4} e^{2 e i n o r s^{2}} - \lambda$$$
Réponse
$$$\left|\begin{array}{c}- a^{2} g^{2} h^{2} m^{2} n^{2} r^{2} s^{2} t^{4} e^{2 e i n o r s^{2}} - \lambda\end{array}\right| = - a^{2} g^{2} h^{2} m^{2} n^{2} r^{2} s^{2} t^{4} e^{2 e i n o r s^{2}} - \lambda$$$A