Integralen av $$$y^{3}$$$
Relaterad kalkylator: Kalkylator för bestämda och oegentliga integraler
Din inmatning
Bestäm $$$\int y^{3}\, dy$$$.
Lösning
Tillämpa potensregeln $$$\int y^{n}\, dy = \frac{y^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ med $$$n=3$$$:
$${\color{red}{\int{y^{3} d y}}}={\color{red}{\frac{y^{1 + 3}}{1 + 3}}}={\color{red}{\left(\frac{y^{4}}{4}\right)}}$$
Alltså,
$$\int{y^{3} d y} = \frac{y^{4}}{4}$$
Lägg till integrationskonstanten:
$$\int{y^{3} d y} = \frac{y^{4}}{4}+C$$
Svar
$$$\int y^{3}\, dy = \frac{y^{4}}{4} + C$$$A
Please try a new game Rotatly