Integralen av $$$3 x - y$$$ med avseende på $$$x$$$

Kalkylatorn beräknar integralen/primitivfunktionen av $$$3 x - y$$$ med avseende på $$$x$$$, med stegvis lösning.

Relaterad kalkylator: Kalkylator för bestämda och oegentliga integraler

Vänligen skriv utan några differentialer såsom $$$dx$$$, $$$dy$$$ osv.
Lämna tomt för automatisk identifiering.

Om räknaren inte beräknade något, om du har identifierat ett fel eller om du har ett förslag/feedback, vänligen kontakta oss.

Din inmatning

Bestäm $$$\int \left(3 x - y\right)\, dx$$$.

Lösning

Integrera termvis:

$${\color{red}{\int{\left(3 x - y\right)d x}}} = {\color{red}{\left(\int{3 x d x} - \int{y d x}\right)}}$$

Tillämpa konstantregeln $$$\int c\, dx = c x$$$ med $$$c=y$$$:

$$\int{3 x d x} - {\color{red}{\int{y d x}}} = \int{3 x d x} - {\color{red}{x y}}$$

Tillämpa konstantfaktorregeln $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ med $$$c=3$$$ och $$$f{\left(x \right)} = x$$$:

$$- x y + {\color{red}{\int{3 x d x}}} = - x y + {\color{red}{\left(3 \int{x d x}\right)}}$$

Tillämpa potensregeln $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ med $$$n=1$$$:

$$- x y + 3 {\color{red}{\int{x d x}}}=- x y + 3 {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=- x y + 3 {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$

Alltså,

$$\int{\left(3 x - y\right)d x} = \frac{3 x^{2}}{2} - x y$$

Förenkla:

$$\int{\left(3 x - y\right)d x} = \frac{x \left(3 x - 2 y\right)}{2}$$

Lägg till integrationskonstanten:

$$\int{\left(3 x - y\right)d x} = \frac{x \left(3 x - 2 y\right)}{2}+C$$

Svar

$$$\int \left(3 x - y\right)\, dx = \frac{x \left(3 x - 2 y\right)}{2} + C$$$A


Please try a new game Rotatly