Integrale di $$$3 x - y$$$ rispetto a $$$x$$$
Calcolatore correlato: Calcolatore di integrali definiti e impropri
Il tuo input
Trova $$$\int \left(3 x - y\right)\, dx$$$.
Soluzione
Integra termine per termine:
$${\color{red}{\int{\left(3 x - y\right)d x}}} = {\color{red}{\left(\int{3 x d x} - \int{y d x}\right)}}$$
Applica la regola della costante $$$\int c\, dx = c x$$$ con $$$c=y$$$:
$$\int{3 x d x} - {\color{red}{\int{y d x}}} = \int{3 x d x} - {\color{red}{x y}}$$
Applica la regola del fattore costante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=3$$$ e $$$f{\left(x \right)} = x$$$:
$$- x y + {\color{red}{\int{3 x d x}}} = - x y + {\color{red}{\left(3 \int{x d x}\right)}}$$
Applica la regola della potenza $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=1$$$:
$$- x y + 3 {\color{red}{\int{x d x}}}=- x y + 3 {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=- x y + 3 {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$
Pertanto,
$$\int{\left(3 x - y\right)d x} = \frac{3 x^{2}}{2} - x y$$
Semplifica:
$$\int{\left(3 x - y\right)d x} = \frac{x \left(3 x - 2 y\right)}{2}$$
Aggiungi la costante di integrazione:
$$\int{\left(3 x - y\right)d x} = \frac{x \left(3 x - 2 y\right)}{2}+C$$
Risposta
$$$\int \left(3 x - y\right)\, dx = \frac{x \left(3 x - 2 y\right)}{2} + C$$$A