Derivatan av $$$x^{4} \cos{\left(x \right)}$$$
Relaterad kalkylator: Derivata-beräknare
Din inmatning
Bestäm $$$\frac{d}{dx} \left(x^{4} \cos{\left(x \right)}\right)$$$.
Lösning
Låt $$$H{\left(x \right)} = x^{4} \cos{\left(x \right)}$$$.
Ta logaritmen av båda sidorna: $$$\ln\left(H{\left(x \right)}\right) = \ln\left(x^{4} \cos{\left(x \right)}\right)$$$.
Skriv om högerledet med hjälp av logaritmlagarna: $$$\ln\left(H{\left(x \right)}\right) = 4 \ln\left(x\right) + \ln\left(\cos{\left(x \right)}\right)$$$.
Derivera båda leden i ekvationen var för sig: $$$\frac{d}{dx} \left(\ln\left(H{\left(x \right)}\right)\right) = \frac{d}{dx} \left(4 \ln\left(x\right) + \ln\left(\cos{\left(x \right)}\right)\right)$$$.
Derivera ekvationens vänsterled.
Funktionen $$$\ln\left(H{\left(x \right)}\right)$$$ är sammansättningen $$$f{\left(g{\left(x \right)} \right)}$$$ av två funktioner $$$f{\left(u \right)} = \ln\left(u\right)$$$ och $$$g{\left(x \right)} = H{\left(x \right)}$$$.
Tillämpa kedjeregeln $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:
$${\color{red}\left(\frac{d}{dx} \left(\ln\left(H{\left(x \right)}\right)\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right) \frac{d}{dx} \left(H{\left(x \right)}\right)\right)}$$Derivatan av den naturliga logaritmen är $$$\frac{d}{du} \left(\ln\left(u\right)\right) = \frac{1}{u}$$$:
$${\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right)\right)} \frac{d}{dx} \left(H{\left(x \right)}\right) = {\color{red}\left(\frac{1}{u}\right)} \frac{d}{dx} \left(H{\left(x \right)}\right)$$Återgå till den ursprungliga variabeln:
$$\frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{{\color{red}\left(u\right)}} = \frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{{\color{red}\left(H{\left(x \right)}\right)}}$$Alltså, $$$\frac{d}{dx} \left(\ln\left(H{\left(x \right)}\right)\right) = \frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{H{\left(x \right)}}$$$.
Derivera ekvationens högerled.
Derivatan av en summa/differens är summan/differensen av derivatorna:
$${\color{red}\left(\frac{d}{dx} \left(4 \ln\left(x\right) + \ln\left(\cos{\left(x \right)}\right)\right)\right)} = {\color{red}\left(\frac{d}{dx} \left(4 \ln\left(x\right)\right) + \frac{d}{dx} \left(\ln\left(\cos{\left(x \right)}\right)\right)\right)}$$Funktionen $$$\ln\left(\cos{\left(x \right)}\right)$$$ är sammansättningen $$$f{\left(g{\left(x \right)} \right)}$$$ av två funktioner $$$f{\left(u \right)} = \ln\left(u\right)$$$ och $$$g{\left(x \right)} = \cos{\left(x \right)}$$$.
Tillämpa kedjeregeln $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:
$${\color{red}\left(\frac{d}{dx} \left(\ln\left(\cos{\left(x \right)}\right)\right)\right)} + \frac{d}{dx} \left(4 \ln\left(x\right)\right) = {\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right) \frac{d}{dx} \left(\cos{\left(x \right)}\right)\right)} + \frac{d}{dx} \left(4 \ln\left(x\right)\right)$$Derivatan av den naturliga logaritmen är $$$\frac{d}{du} \left(\ln\left(u\right)\right) = \frac{1}{u}$$$:
$${\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right)\right)} \frac{d}{dx} \left(\cos{\left(x \right)}\right) + \frac{d}{dx} \left(4 \ln\left(x\right)\right) = {\color{red}\left(\frac{1}{u}\right)} \frac{d}{dx} \left(\cos{\left(x \right)}\right) + \frac{d}{dx} \left(4 \ln\left(x\right)\right)$$Återgå till den ursprungliga variabeln:
$$\frac{d}{dx} \left(4 \ln\left(x\right)\right) + \frac{\frac{d}{dx} \left(\cos{\left(x \right)}\right)}{{\color{red}\left(u\right)}} = \frac{d}{dx} \left(4 \ln\left(x\right)\right) + \frac{\frac{d}{dx} \left(\cos{\left(x \right)}\right)}{{\color{red}\left(\cos{\left(x \right)}\right)}}$$Derivatan av cosinus är $$$\frac{d}{dx} \left(\cos{\left(x \right)}\right) = - \sin{\left(x \right)}$$$:
$$\frac{d}{dx} \left(4 \ln\left(x\right)\right) + \frac{{\color{red}\left(\frac{d}{dx} \left(\cos{\left(x \right)}\right)\right)}}{\cos{\left(x \right)}} = \frac{d}{dx} \left(4 \ln\left(x\right)\right) + \frac{{\color{red}\left(- \sin{\left(x \right)}\right)}}{\cos{\left(x \right)}}$$Tillämpa konstantfaktorregeln $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ med $$$c = 4$$$ och $$$f{\left(x \right)} = \ln\left(x\right)$$$:
$$- \frac{\sin{\left(x \right)}}{\cos{\left(x \right)}} + {\color{red}\left(\frac{d}{dx} \left(4 \ln\left(x\right)\right)\right)} = - \frac{\sin{\left(x \right)}}{\cos{\left(x \right)}} + {\color{red}\left(4 \frac{d}{dx} \left(\ln\left(x\right)\right)\right)}$$Derivatan av den naturliga logaritmen är $$$\frac{d}{dx} \left(\ln\left(x\right)\right) = \frac{1}{x}$$$:
$$- \frac{\sin{\left(x \right)}}{\cos{\left(x \right)}} + 4 {\color{red}\left(\frac{d}{dx} \left(\ln\left(x\right)\right)\right)} = - \frac{\sin{\left(x \right)}}{\cos{\left(x \right)}} + 4 {\color{red}\left(\frac{1}{x}\right)}$$Förenkla:
$$- \frac{\sin{\left(x \right)}}{\cos{\left(x \right)}} + \frac{4}{x} = - \tan{\left(x \right)} + \frac{4}{x}$$Alltså, $$$\frac{d}{dx} \left(4 \ln\left(x\right) + \ln\left(\cos{\left(x \right)}\right)\right) = - \tan{\left(x \right)} + \frac{4}{x}$$$.
Således, $$$\frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{H{\left(x \right)}} = - \tan{\left(x \right)} + \frac{4}{x}$$$.
Således, $$$\frac{d}{dx} \left(H{\left(x \right)}\right) = \left(- \tan{\left(x \right)} + \frac{4}{x}\right) H{\left(x \right)} = x^{3} \left(- x \tan{\left(x \right)} + 4\right) \cos{\left(x \right)}$$$.
Svar
$$$\frac{d}{dx} \left(x^{4} \cos{\left(x \right)}\right) = x^{3} \left(- x \tan{\left(x \right)} + 4\right) \cos{\left(x \right)}$$$A