$$$x^{4} \cos{\left(x \right)}$$$的导数
您的输入
求$$$\frac{d}{dx} \left(x^{4} \cos{\left(x \right)}\right)$$$。
解答
设$$$H{\left(x \right)} = x^{4} \cos{\left(x \right)}$$$。
对等式两边取对数:$$$\ln\left(H{\left(x \right)}\right) = \ln\left(x^{4} \cos{\left(x \right)}\right)$$$。
利用对数的性质改写等式右边:$$$\ln\left(H{\left(x \right)}\right) = 4 \ln\left(x\right) + \ln\left(\cos{\left(x \right)}\right)$$$。
分别对方程两边求导:$$$\frac{d}{dx} \left(\ln\left(H{\left(x \right)}\right)\right) = \frac{d}{dx} \left(4 \ln\left(x\right) + \ln\left(\cos{\left(x \right)}\right)\right)$$$。
对方程的左边求导。
函数$$$\ln\left(H{\left(x \right)}\right)$$$是两个函数$$$f{\left(u \right)} = \ln\left(u\right)$$$和$$$g{\left(x \right)} = H{\left(x \right)}$$$的复合$$$f{\left(g{\left(x \right)} \right)}$$$。
应用链式法则 $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:
$${\color{red}\left(\frac{d}{dx} \left(\ln\left(H{\left(x \right)}\right)\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right) \frac{d}{dx} \left(H{\left(x \right)}\right)\right)}$$自然对数的导数为 $$$\frac{d}{du} \left(\ln\left(u\right)\right) = \frac{1}{u}$$$:
$${\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right)\right)} \frac{d}{dx} \left(H{\left(x \right)}\right) = {\color{red}\left(\frac{1}{u}\right)} \frac{d}{dx} \left(H{\left(x \right)}\right)$$返回到原变量:
$$\frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{{\color{red}\left(u\right)}} = \frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{{\color{red}\left(H{\left(x \right)}\right)}}$$因此,$$$\frac{d}{dx} \left(\ln\left(H{\left(x \right)}\right)\right) = \frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{H{\left(x \right)}}$$$。
对等式右边求导。
和/差的导数等于导数的和/差:
$${\color{red}\left(\frac{d}{dx} \left(4 \ln\left(x\right) + \ln\left(\cos{\left(x \right)}\right)\right)\right)} = {\color{red}\left(\frac{d}{dx} \left(4 \ln\left(x\right)\right) + \frac{d}{dx} \left(\ln\left(\cos{\left(x \right)}\right)\right)\right)}$$函数$$$\ln\left(\cos{\left(x \right)}\right)$$$是两个函数$$$f{\left(u \right)} = \ln\left(u\right)$$$和$$$g{\left(x \right)} = \cos{\left(x \right)}$$$的复合$$$f{\left(g{\left(x \right)} \right)}$$$。
应用链式法则 $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:
$${\color{red}\left(\frac{d}{dx} \left(\ln\left(\cos{\left(x \right)}\right)\right)\right)} + \frac{d}{dx} \left(4 \ln\left(x\right)\right) = {\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right) \frac{d}{dx} \left(\cos{\left(x \right)}\right)\right)} + \frac{d}{dx} \left(4 \ln\left(x\right)\right)$$自然对数的导数为 $$$\frac{d}{du} \left(\ln\left(u\right)\right) = \frac{1}{u}$$$:
$${\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right)\right)} \frac{d}{dx} \left(\cos{\left(x \right)}\right) + \frac{d}{dx} \left(4 \ln\left(x\right)\right) = {\color{red}\left(\frac{1}{u}\right)} \frac{d}{dx} \left(\cos{\left(x \right)}\right) + \frac{d}{dx} \left(4 \ln\left(x\right)\right)$$返回到原变量:
$$\frac{d}{dx} \left(4 \ln\left(x\right)\right) + \frac{\frac{d}{dx} \left(\cos{\left(x \right)}\right)}{{\color{red}\left(u\right)}} = \frac{d}{dx} \left(4 \ln\left(x\right)\right) + \frac{\frac{d}{dx} \left(\cos{\left(x \right)}\right)}{{\color{red}\left(\cos{\left(x \right)}\right)}}$$余弦函数的导数是$$$\frac{d}{dx} \left(\cos{\left(x \right)}\right) = - \sin{\left(x \right)}$$$:
$$\frac{d}{dx} \left(4 \ln\left(x\right)\right) + \frac{{\color{red}\left(\frac{d}{dx} \left(\cos{\left(x \right)}\right)\right)}}{\cos{\left(x \right)}} = \frac{d}{dx} \left(4 \ln\left(x\right)\right) + \frac{{\color{red}\left(- \sin{\left(x \right)}\right)}}{\cos{\left(x \right)}}$$对 $$$c = 4$$$ 和 $$$f{\left(x \right)} = \ln\left(x\right)$$$ 应用常数倍法则 $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$:
$$- \frac{\sin{\left(x \right)}}{\cos{\left(x \right)}} + {\color{red}\left(\frac{d}{dx} \left(4 \ln\left(x\right)\right)\right)} = - \frac{\sin{\left(x \right)}}{\cos{\left(x \right)}} + {\color{red}\left(4 \frac{d}{dx} \left(\ln\left(x\right)\right)\right)}$$自然对数的导数为 $$$\frac{d}{dx} \left(\ln\left(x\right)\right) = \frac{1}{x}$$$:
$$- \frac{\sin{\left(x \right)}}{\cos{\left(x \right)}} + 4 {\color{red}\left(\frac{d}{dx} \left(\ln\left(x\right)\right)\right)} = - \frac{\sin{\left(x \right)}}{\cos{\left(x \right)}} + 4 {\color{red}\left(\frac{1}{x}\right)}$$化简:
$$- \frac{\sin{\left(x \right)}}{\cos{\left(x \right)}} + \frac{4}{x} = - \tan{\left(x \right)} + \frac{4}{x}$$因此,$$$\frac{d}{dx} \left(4 \ln\left(x\right) + \ln\left(\cos{\left(x \right)}\right)\right) = - \tan{\left(x \right)} + \frac{4}{x}$$$。
因此,$$$\frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{H{\left(x \right)}} = - \tan{\left(x \right)} + \frac{4}{x}$$$。
因此,$$$\frac{d}{dx} \left(H{\left(x \right)}\right) = \left(- \tan{\left(x \right)} + \frac{4}{x}\right) H{\left(x \right)} = x^{3} \left(- x \tan{\left(x \right)} + 4\right) \cos{\left(x \right)}$$$。
答案
$$$\frac{d}{dx} \left(x^{4} \cos{\left(x \right)}\right) = x^{3} \left(- x \tan{\left(x \right)} + 4\right) \cos{\left(x \right)}$$$A