Παράγωγος της $$$x^{4} \cos{\left(x \right)}$$$

Ο υπολογιστής θα βρει την παράγωγο της $$$x^{4} \cos{\left(x \right)}$$$ χρησιμοποιώντας τη λογαριθμική παραγώγιση, με εμφανιζόμενα βήματα.

Σχετικός υπολογιστής: Υπολογιστής Παραγώγου

Αφήστε κενό για αυτόματη ανίχνευση.
Αφήστε κενό, αν δεν χρειάζεστε την τιμή της παραγώγου σε ένα συγκεκριμένο σημείο.

Εάν η αριθμομηχανή δεν υπολόγισε κάτι ή έχετε εντοπίσει κάποιο σφάλμα, ή έχετε κάποια πρόταση/σχόλιο, παρακαλούμε επικοινωνήστε μαζί μας.

Η είσοδός σας

Βρείτε $$$\frac{d}{dx} \left(x^{4} \cos{\left(x \right)}\right)$$$.

Λύση

Έστω $$$H{\left(x \right)} = x^{4} \cos{\left(x \right)}$$$.

Πάρτε τον λογάριθμο και στα δύο μέλη: $$$\ln\left(H{\left(x \right)}\right) = \ln\left(x^{4} \cos{\left(x \right)}\right)$$$.

Ξαναγράψτε το δεξί μέλος χρησιμοποιώντας τις ιδιότητες των λογαρίθμων: $$$\ln\left(H{\left(x \right)}\right) = 4 \ln\left(x\right) + \ln\left(\cos{\left(x \right)}\right)$$$.

Παραγώγισε χωριστά και τα δύο μέλη της εξίσωσης: $$$\frac{d}{dx} \left(\ln\left(H{\left(x \right)}\right)\right) = \frac{d}{dx} \left(4 \ln\left(x\right) + \ln\left(\cos{\left(x \right)}\right)\right)$$$.

Υπολογίστε την παράγωγο του αριστερού μέλους της εξίσωσης.

Η συνάρτηση $$$\ln\left(H{\left(x \right)}\right)$$$ είναι η σύνθεση $$$f{\left(g{\left(x \right)} \right)}$$$ των δύο συναρτήσεων $$$f{\left(u \right)} = \ln\left(u\right)$$$ και $$$g{\left(x \right)} = H{\left(x \right)}$$$.

Εφαρμόστε τον κανόνα της αλυσίδας $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:

$${\color{red}\left(\frac{d}{dx} \left(\ln\left(H{\left(x \right)}\right)\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right) \frac{d}{dx} \left(H{\left(x \right)}\right)\right)}$$

Η παράγωγος του φυσικού λογαρίθμου είναι $$$\frac{d}{du} \left(\ln\left(u\right)\right) = \frac{1}{u}$$$:

$${\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right)\right)} \frac{d}{dx} \left(H{\left(x \right)}\right) = {\color{red}\left(\frac{1}{u}\right)} \frac{d}{dx} \left(H{\left(x \right)}\right)$$

Επιστροφή στην αρχική μεταβλητή:

$$\frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{{\color{red}\left(u\right)}} = \frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{{\color{red}\left(H{\left(x \right)}\right)}}$$

Άρα, $$$\frac{d}{dx} \left(\ln\left(H{\left(x \right)}\right)\right) = \frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{H{\left(x \right)}}$$$.

Παραγώγισε το δεξί μέλος της εξίσωσης.

Η παράγωγος του αθροίσματος/της διαφοράς είναι το άθροισμα/η διαφορά των παραγώγων:

$${\color{red}\left(\frac{d}{dx} \left(4 \ln\left(x\right) + \ln\left(\cos{\left(x \right)}\right)\right)\right)} = {\color{red}\left(\frac{d}{dx} \left(4 \ln\left(x\right)\right) + \frac{d}{dx} \left(\ln\left(\cos{\left(x \right)}\right)\right)\right)}$$

Η συνάρτηση $$$\ln\left(\cos{\left(x \right)}\right)$$$ είναι η σύνθεση $$$f{\left(g{\left(x \right)} \right)}$$$ των δύο συναρτήσεων $$$f{\left(u \right)} = \ln\left(u\right)$$$ και $$$g{\left(x \right)} = \cos{\left(x \right)}$$$.

Εφαρμόστε τον κανόνα της αλυσίδας $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:

$${\color{red}\left(\frac{d}{dx} \left(\ln\left(\cos{\left(x \right)}\right)\right)\right)} + \frac{d}{dx} \left(4 \ln\left(x\right)\right) = {\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right) \frac{d}{dx} \left(\cos{\left(x \right)}\right)\right)} + \frac{d}{dx} \left(4 \ln\left(x\right)\right)$$

Η παράγωγος του φυσικού λογαρίθμου είναι $$$\frac{d}{du} \left(\ln\left(u\right)\right) = \frac{1}{u}$$$:

$${\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right)\right)} \frac{d}{dx} \left(\cos{\left(x \right)}\right) + \frac{d}{dx} \left(4 \ln\left(x\right)\right) = {\color{red}\left(\frac{1}{u}\right)} \frac{d}{dx} \left(\cos{\left(x \right)}\right) + \frac{d}{dx} \left(4 \ln\left(x\right)\right)$$

Επιστροφή στην αρχική μεταβλητή:

$$\frac{d}{dx} \left(4 \ln\left(x\right)\right) + \frac{\frac{d}{dx} \left(\cos{\left(x \right)}\right)}{{\color{red}\left(u\right)}} = \frac{d}{dx} \left(4 \ln\left(x\right)\right) + \frac{\frac{d}{dx} \left(\cos{\left(x \right)}\right)}{{\color{red}\left(\cos{\left(x \right)}\right)}}$$

Η παράγωγος του συνημιτόνου είναι $$$\frac{d}{dx} \left(\cos{\left(x \right)}\right) = - \sin{\left(x \right)}$$$:

$$\frac{d}{dx} \left(4 \ln\left(x\right)\right) + \frac{{\color{red}\left(\frac{d}{dx} \left(\cos{\left(x \right)}\right)\right)}}{\cos{\left(x \right)}} = \frac{d}{dx} \left(4 \ln\left(x\right)\right) + \frac{{\color{red}\left(- \sin{\left(x \right)}\right)}}{\cos{\left(x \right)}}$$

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασιαστή $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ με $$$c = 4$$$ και $$$f{\left(x \right)} = \ln\left(x\right)$$$:

$$- \frac{\sin{\left(x \right)}}{\cos{\left(x \right)}} + {\color{red}\left(\frac{d}{dx} \left(4 \ln\left(x\right)\right)\right)} = - \frac{\sin{\left(x \right)}}{\cos{\left(x \right)}} + {\color{red}\left(4 \frac{d}{dx} \left(\ln\left(x\right)\right)\right)}$$

Η παράγωγος του φυσικού λογαρίθμου είναι $$$\frac{d}{dx} \left(\ln\left(x\right)\right) = \frac{1}{x}$$$:

$$- \frac{\sin{\left(x \right)}}{\cos{\left(x \right)}} + 4 {\color{red}\left(\frac{d}{dx} \left(\ln\left(x\right)\right)\right)} = - \frac{\sin{\left(x \right)}}{\cos{\left(x \right)}} + 4 {\color{red}\left(\frac{1}{x}\right)}$$

Απλοποιήστε:

$$- \frac{\sin{\left(x \right)}}{\cos{\left(x \right)}} + \frac{4}{x} = - \tan{\left(x \right)} + \frac{4}{x}$$

Άρα, $$$\frac{d}{dx} \left(4 \ln\left(x\right) + \ln\left(\cos{\left(x \right)}\right)\right) = - \tan{\left(x \right)} + \frac{4}{x}$$$.

Συνεπώς, $$$\frac{\frac{d}{dx} \left(H{\left(x \right)}\right)}{H{\left(x \right)}} = - \tan{\left(x \right)} + \frac{4}{x}$$$.

Επομένως, $$$\frac{d}{dx} \left(H{\left(x \right)}\right) = \left(- \tan{\left(x \right)} + \frac{4}{x}\right) H{\left(x \right)} = x^{3} \left(- x \tan{\left(x \right)} + 4\right) \cos{\left(x \right)}$$$.

Απάντηση

$$$\frac{d}{dx} \left(x^{4} \cos{\left(x \right)}\right) = x^{3} \left(- x \tan{\left(x \right)} + 4\right) \cos{\left(x \right)}$$$A


Please try a new game Rotatly