Gränsvärdesräknare

Beräkna gränsvärden steg för steg

Denna gratis kalkylator kommer att försöka bestämma gränsvärdet (tvåsidigt eller ensidigt, vänster- eller högergränsvärde) för den angivna funktionen vid den angivna punkten (även vid oändligheten), med visade steg.

Olika tekniker används för att hantera gränsvärden (inklusive obestämda former): räknelagar för gränsvärden, omskrivning och förenkling, L'Hôpitals regel, rationalisering av nämnaren, att ta den naturliga logaritmen, etc.

Enter a function:

Choose a variable:

Find the limit at:

If you need `oo`, type inf.

Choose a direction:

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Solution

Your input: find $$$\lim_{x \to \infty} \frac{x + \sin{\left(x \right)}}{x}$$$

Rewrite:

$${\color{red}{\lim_{x \to \infty} \frac{x + \sin{\left(x \right)}}{x}}} = {\color{red}{\lim_{x \to \infty}\left(1 + \frac{\sin{\left(x \right)}}{x}\right)}}$$

The limit of a sum/difference is the sum/difference of limits:

$${\color{red}{\lim_{x \to \infty}\left(1 + \frac{\sin{\left(x \right)}}{x}\right)}} = {\color{red}{\left(\lim_{x \to \infty} 1 + \lim_{x \to \infty} \frac{\sin{\left(x \right)}}{x}\right)}}$$

The limit of a constant is equal to the constant:

$$\lim_{x \to \infty} \frac{\sin{\left(x \right)}}{x} + {\color{red}{\lim_{x \to \infty} 1}} = \lim_{x \to \infty} \frac{\sin{\left(x \right)}}{x} + {\color{red}{1}}$$

Since the absolute value of the sine is is not greater than $$$1$$$, then:

$$- \frac{1}{x} \leq \frac{\sin{\left(x \right)}}{x} \leq \frac{1}{x}$$

Taking the limits, we have that:

$$\lim_{x \to \infty}\left(- \frac{1}{x}\right) \leq \lim_{x \to \infty} \frac{\sin{\left(x \right)}}{x} \leq \lim_{x \to \infty} \frac{1}{x}$$

$$0 \leq \lim_{x \to \infty} \frac{\sin{\left(x \right)}}{x} \leq 0$$

Since the limits are equal, then, by the Squeeze Theorem:

$$\lim_{x \to \infty} \frac{\sin{\left(x \right)}}{x}=0$$

Therefore,

$$\lim_{x \to \infty} \frac{x + \sin{\left(x \right)}}{x} = 1$$

Answer: $$$\lim_{x \to \infty} \frac{x + \sin{\left(x \right)}}{x}=1$$$


Please try a new game Rotatly