Integral de $$$\frac{x}{\ln\left(x\right)}$$$

A calculadora encontrará a integral/antiderivada de $$$\frac{x}{\ln\left(x\right)}$$$, com os passos mostrados.

Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias

Por favor, escreva sem diferenciais tais como $$$dx$$$, $$$dy$$$ etc.
Deixe em branco para detecção automática.

Se a calculadora não conseguiu calcular algo ou você identificou um erro, ou se tem uma sugestão/feedback, por favor entre em contato conosco.

Sua entrada

Encontre $$$\int \frac{x}{\ln\left(x\right)}\, dx$$$.

Solução

Seja $$$u=\ln{\left(x \right)}$$$.

Então $$$du=\left(\ln{\left(x \right)}\right)^{\prime }dx = \frac{dx}{x}$$$ (veja os passos »), e obtemos $$$\frac{dx}{x} = du$$$.

A integral pode ser reescrita como

$${\color{red}{\int{\frac{x}{\ln{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{e^{2 u}}{u} d u}}}$$

Seja $$$v=2 u$$$.

Então $$$dv=\left(2 u\right)^{\prime }du = 2 du$$$ (veja os passos »), e obtemos $$$du = \frac{dv}{2}$$$.

Portanto,

$${\color{red}{\int{\frac{e^{2 u}}{u} d u}}} = {\color{red}{\int{\frac{e^{v}}{v} d v}}}$$

Esta integral (Integral Exponencial) não possui forma fechada:

$${\color{red}{\int{\frac{e^{v}}{v} d v}}} = {\color{red}{\operatorname{Ei}{\left(v \right)}}}$$

Recorde que $$$v=2 u$$$:

$$\operatorname{Ei}{\left({\color{red}{v}} \right)} = \operatorname{Ei}{\left({\color{red}{\left(2 u\right)}} \right)}$$

Recorde que $$$u=\ln{\left(x \right)}$$$:

$$\operatorname{Ei}{\left(2 {\color{red}{u}} \right)} = \operatorname{Ei}{\left(2 {\color{red}{\ln{\left(x \right)}}} \right)}$$

Portanto,

$$\int{\frac{x}{\ln{\left(x \right)}} d x} = \operatorname{Ei}{\left(2 \ln{\left(x \right)} \right)}$$

Adicione a constante de integração:

$$\int{\frac{x}{\ln{\left(x \right)}} d x} = \operatorname{Ei}{\left(2 \ln{\left(x \right)} \right)}+C$$

Resposta

$$$\int \frac{x}{\ln\left(x\right)}\, dx = \operatorname{Ei}{\left(2 \ln\left(x\right) \right)} + C$$$A


Please try a new game Rotatly