$$$\frac{x}{\ln\left(x\right)}$$$ 的積分
您的輸入
求$$$\int \frac{x}{\ln\left(x\right)}\, dx$$$。
解答
令 $$$u=\ln{\left(x \right)}$$$。
則 $$$du=\left(\ln{\left(x \right)}\right)^{\prime }dx = \frac{dx}{x}$$$ (步驟見»),並可得 $$$\frac{dx}{x} = du$$$。
因此,
$${\color{red}{\int{\frac{x}{\ln{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{e^{2 u}}{u} d u}}}$$
令 $$$v=2 u$$$。
則 $$$dv=\left(2 u\right)^{\prime }du = 2 du$$$ (步驟見»),並可得 $$$du = \frac{dv}{2}$$$。
因此,
$${\color{red}{\int{\frac{e^{2 u}}{u} d u}}} = {\color{red}{\int{\frac{e^{v}}{v} d v}}}$$
此積分(指數積分)不存在閉式表示:
$${\color{red}{\int{\frac{e^{v}}{v} d v}}} = {\color{red}{\operatorname{Ei}{\left(v \right)}}}$$
回顧一下 $$$v=2 u$$$:
$$\operatorname{Ei}{\left({\color{red}{v}} \right)} = \operatorname{Ei}{\left({\color{red}{\left(2 u\right)}} \right)}$$
回顧一下 $$$u=\ln{\left(x \right)}$$$:
$$\operatorname{Ei}{\left(2 {\color{red}{u}} \right)} = \operatorname{Ei}{\left(2 {\color{red}{\ln{\left(x \right)}}} \right)}$$
因此,
$$\int{\frac{x}{\ln{\left(x \right)}} d x} = \operatorname{Ei}{\left(2 \ln{\left(x \right)} \right)}$$
加上積分常數:
$$\int{\frac{x}{\ln{\left(x \right)}} d x} = \operatorname{Ei}{\left(2 \ln{\left(x \right)} \right)}+C$$
答案
$$$\int \frac{x}{\ln\left(x\right)}\, dx = \operatorname{Ei}{\left(2 \ln\left(x\right) \right)} + C$$$A