$$$\frac{x}{\ln\left(x\right)}$$$ 的積分

此計算器將求出 $$$\frac{x}{\ln\left(x\right)}$$$ 的不定積分(原函數),並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int \frac{x}{\ln\left(x\right)}\, dx$$$

解答

$$$u=\ln{\left(x \right)}$$$

$$$du=\left(\ln{\left(x \right)}\right)^{\prime }dx = \frac{dx}{x}$$$ (步驟見»),並可得 $$$\frac{dx}{x} = du$$$

因此,

$${\color{red}{\int{\frac{x}{\ln{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{e^{2 u}}{u} d u}}}$$

$$$v=2 u$$$

$$$dv=\left(2 u\right)^{\prime }du = 2 du$$$ (步驟見»),並可得 $$$du = \frac{dv}{2}$$$

因此,

$${\color{red}{\int{\frac{e^{2 u}}{u} d u}}} = {\color{red}{\int{\frac{e^{v}}{v} d v}}}$$

此積分(指數積分)不存在閉式表示:

$${\color{red}{\int{\frac{e^{v}}{v} d v}}} = {\color{red}{\operatorname{Ei}{\left(v \right)}}}$$

回顧一下 $$$v=2 u$$$

$$\operatorname{Ei}{\left({\color{red}{v}} \right)} = \operatorname{Ei}{\left({\color{red}{\left(2 u\right)}} \right)}$$

回顧一下 $$$u=\ln{\left(x \right)}$$$

$$\operatorname{Ei}{\left(2 {\color{red}{u}} \right)} = \operatorname{Ei}{\left(2 {\color{red}{\ln{\left(x \right)}}} \right)}$$

因此,

$$\int{\frac{x}{\ln{\left(x \right)}} d x} = \operatorname{Ei}{\left(2 \ln{\left(x \right)} \right)}$$

加上積分常數:

$$\int{\frac{x}{\ln{\left(x \right)}} d x} = \operatorname{Ei}{\left(2 \ln{\left(x \right)} \right)}+C$$

答案

$$$\int \frac{x}{\ln\left(x\right)}\, dx = \operatorname{Ei}{\left(2 \ln\left(x\right) \right)} + C$$$A


Please try a new game Rotatly