$$$\frac{x}{\ln\left(x\right)}$$$ 的积分
您的输入
求$$$\int \frac{x}{\ln\left(x\right)}\, dx$$$。
解答
设$$$u=\ln{\left(x \right)}$$$。
则$$$du=\left(\ln{\left(x \right)}\right)^{\prime }dx = \frac{dx}{x}$$$ (步骤见»),并有$$$\frac{dx}{x} = du$$$。
该积分可以改写为
$${\color{red}{\int{\frac{x}{\ln{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{e^{2 u}}{u} d u}}}$$
设$$$v=2 u$$$。
则$$$dv=\left(2 u\right)^{\prime }du = 2 du$$$ (步骤见»),并有$$$du = \frac{dv}{2}$$$。
积分变为
$${\color{red}{\int{\frac{e^{2 u}}{u} d u}}} = {\color{red}{\int{\frac{e^{v}}{v} d v}}}$$
该积分(指数积分)没有闭式表达式:
$${\color{red}{\int{\frac{e^{v}}{v} d v}}} = {\color{red}{\operatorname{Ei}{\left(v \right)}}}$$
回忆一下 $$$v=2 u$$$:
$$\operatorname{Ei}{\left({\color{red}{v}} \right)} = \operatorname{Ei}{\left({\color{red}{\left(2 u\right)}} \right)}$$
回忆一下 $$$u=\ln{\left(x \right)}$$$:
$$\operatorname{Ei}{\left(2 {\color{red}{u}} \right)} = \operatorname{Ei}{\left(2 {\color{red}{\ln{\left(x \right)}}} \right)}$$
因此,
$$\int{\frac{x}{\ln{\left(x \right)}} d x} = \operatorname{Ei}{\left(2 \ln{\left(x \right)} \right)}$$
加上积分常数:
$$\int{\frac{x}{\ln{\left(x \right)}} d x} = \operatorname{Ei}{\left(2 \ln{\left(x \right)} \right)}+C$$
答案
$$$\int \frac{x}{\ln\left(x\right)}\, dx = \operatorname{Ei}{\left(2 \ln\left(x\right) \right)} + C$$$A