Integral de $$$\sin{\left(\left(x + 2\right)^{2} \right)}$$$
Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias
Sua entrada
Encontre $$$\int \sin{\left(\left(x + 2\right)^{2} \right)}\, dx$$$.
Solução
Seja $$$u=x + 2$$$.
Então $$$du=\left(x + 2\right)^{\prime }dx = 1 dx$$$ (veja os passos »), e obtemos $$$dx = du$$$.
Portanto,
$${\color{red}{\int{\sin{\left(\left(x + 2\right)^{2} \right)} d x}}} = {\color{red}{\int{\sin{\left(u^{2} \right)} d u}}}$$
Esta integral (Integral Seno de Fresnel) não possui forma fechada:
$${\color{red}{\int{\sin{\left(u^{2} \right)} d u}}} = {\color{red}{\left(\frac{\sqrt{2} \sqrt{\pi} S\left(\frac{\sqrt{2} u}{\sqrt{\pi}}\right)}{2}\right)}}$$
Recorde que $$$u=x + 2$$$:
$$\frac{\sqrt{2} \sqrt{\pi} S\left(\frac{\sqrt{2} {\color{red}{u}}}{\sqrt{\pi}}\right)}{2} = \frac{\sqrt{2} \sqrt{\pi} S\left(\frac{\sqrt{2} {\color{red}{\left(x + 2\right)}}}{\sqrt{\pi}}\right)}{2}$$
Portanto,
$$\int{\sin{\left(\left(x + 2\right)^{2} \right)} d x} = \frac{\sqrt{2} \sqrt{\pi} S\left(\frac{\sqrt{2} \left(x + 2\right)}{\sqrt{\pi}}\right)}{2}$$
Adicione a constante de integração:
$$\int{\sin{\left(\left(x + 2\right)^{2} \right)} d x} = \frac{\sqrt{2} \sqrt{\pi} S\left(\frac{\sqrt{2} \left(x + 2\right)}{\sqrt{\pi}}\right)}{2}+C$$
Resposta
$$$\int \sin{\left(\left(x + 2\right)^{2} \right)}\, dx = \frac{\sqrt{2} \sqrt{\pi} S\left(\frac{\sqrt{2} \left(x + 2\right)}{\sqrt{\pi}}\right)}{2} + C$$$A