$$$\sin{\left(\left(x + 2\right)^{2} \right)}$$$의 적분
관련 계산기: 정적분 및 가적분 계산기
사용자 입력
$$$\int \sin{\left(\left(x + 2\right)^{2} \right)}\, dx$$$을(를) 구하시오.
풀이
$$$u=x + 2$$$라 하자.
그러면 $$$du=\left(x + 2\right)^{\prime }dx = 1 dx$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$dx = du$$$임을 얻습니다.
적분은 다음과 같이 됩니다.
$${\color{red}{\int{\sin{\left(\left(x + 2\right)^{2} \right)} d x}}} = {\color{red}{\int{\sin{\left(u^{2} \right)} d u}}}$$
이 적분(프레넬 사인 적분)은 닫힌형 표현이 없습니다:
$${\color{red}{\int{\sin{\left(u^{2} \right)} d u}}} = {\color{red}{\left(\frac{\sqrt{2} \sqrt{\pi} S\left(\frac{\sqrt{2} u}{\sqrt{\pi}}\right)}{2}\right)}}$$
다음 $$$u=x + 2$$$을 기억하라:
$$\frac{\sqrt{2} \sqrt{\pi} S\left(\frac{\sqrt{2} {\color{red}{u}}}{\sqrt{\pi}}\right)}{2} = \frac{\sqrt{2} \sqrt{\pi} S\left(\frac{\sqrt{2} {\color{red}{\left(x + 2\right)}}}{\sqrt{\pi}}\right)}{2}$$
따라서,
$$\int{\sin{\left(\left(x + 2\right)^{2} \right)} d x} = \frac{\sqrt{2} \sqrt{\pi} S\left(\frac{\sqrt{2} \left(x + 2\right)}{\sqrt{\pi}}\right)}{2}$$
적분 상수를 추가하세요:
$$\int{\sin{\left(\left(x + 2\right)^{2} \right)} d x} = \frac{\sqrt{2} \sqrt{\pi} S\left(\frac{\sqrt{2} \left(x + 2\right)}{\sqrt{\pi}}\right)}{2}+C$$
정답
$$$\int \sin{\left(\left(x + 2\right)^{2} \right)}\, dx = \frac{\sqrt{2} \sqrt{\pi} S\left(\frac{\sqrt{2} \left(x + 2\right)}{\sqrt{\pi}}\right)}{2} + C$$$A