Integralen av $$$\sin{\left(\left(x + 2\right)^{2} \right)}$$$
Relaterad kalkylator: Kalkylator för bestämda och oegentliga integraler
Din inmatning
Bestäm $$$\int \sin{\left(\left(x + 2\right)^{2} \right)}\, dx$$$.
Lösning
Låt $$$u=x + 2$$$ vara.
Då $$$du=\left(x + 2\right)^{\prime }dx = 1 dx$$$ (stegen kan ses »), och vi har att $$$dx = du$$$.
Integralen blir
$${\color{red}{\int{\sin{\left(\left(x + 2\right)^{2} \right)} d x}}} = {\color{red}{\int{\sin{\left(u^{2} \right)} d u}}}$$
Denna integral (Fresnels sinusintegral) har ingen sluten form:
$${\color{red}{\int{\sin{\left(u^{2} \right)} d u}}} = {\color{red}{\left(\frac{\sqrt{2} \sqrt{\pi} S\left(\frac{\sqrt{2} u}{\sqrt{\pi}}\right)}{2}\right)}}$$
Kom ihåg att $$$u=x + 2$$$:
$$\frac{\sqrt{2} \sqrt{\pi} S\left(\frac{\sqrt{2} {\color{red}{u}}}{\sqrt{\pi}}\right)}{2} = \frac{\sqrt{2} \sqrt{\pi} S\left(\frac{\sqrt{2} {\color{red}{\left(x + 2\right)}}}{\sqrt{\pi}}\right)}{2}$$
Alltså,
$$\int{\sin{\left(\left(x + 2\right)^{2} \right)} d x} = \frac{\sqrt{2} \sqrt{\pi} S\left(\frac{\sqrt{2} \left(x + 2\right)}{\sqrt{\pi}}\right)}{2}$$
Lägg till integrationskonstanten:
$$\int{\sin{\left(\left(x + 2\right)^{2} \right)} d x} = \frac{\sqrt{2} \sqrt{\pi} S\left(\frac{\sqrt{2} \left(x + 2\right)}{\sqrt{\pi}}\right)}{2}+C$$
Svar
$$$\int \sin{\left(\left(x + 2\right)^{2} \right)}\, dx = \frac{\sqrt{2} \sqrt{\pi} S\left(\frac{\sqrt{2} \left(x + 2\right)}{\sqrt{\pi}}\right)}{2} + C$$$A