Integral de $$$\sin{\left(\left(x + 2\right)^{2} \right)}$$$
Calculadora relacionada: Calculadora de integrales definidas e impropias
Tu entrada
Halla $$$\int \sin{\left(\left(x + 2\right)^{2} \right)}\, dx$$$.
Solución
Sea $$$u=x + 2$$$.
Entonces $$$du=\left(x + 2\right)^{\prime }dx = 1 dx$$$ (los pasos pueden verse »), y obtenemos que $$$dx = du$$$.
Por lo tanto,
$${\color{red}{\int{\sin{\left(\left(x + 2\right)^{2} \right)} d x}}} = {\color{red}{\int{\sin{\left(u^{2} \right)} d u}}}$$
Esta integral (Integral seno de Fresnel) no tiene una forma cerrada:
$${\color{red}{\int{\sin{\left(u^{2} \right)} d u}}} = {\color{red}{\left(\frac{\sqrt{2} \sqrt{\pi} S\left(\frac{\sqrt{2} u}{\sqrt{\pi}}\right)}{2}\right)}}$$
Recordemos que $$$u=x + 2$$$:
$$\frac{\sqrt{2} \sqrt{\pi} S\left(\frac{\sqrt{2} {\color{red}{u}}}{\sqrt{\pi}}\right)}{2} = \frac{\sqrt{2} \sqrt{\pi} S\left(\frac{\sqrt{2} {\color{red}{\left(x + 2\right)}}}{\sqrt{\pi}}\right)}{2}$$
Por lo tanto,
$$\int{\sin{\left(\left(x + 2\right)^{2} \right)} d x} = \frac{\sqrt{2} \sqrt{\pi} S\left(\frac{\sqrt{2} \left(x + 2\right)}{\sqrt{\pi}}\right)}{2}$$
Añade la constante de integración:
$$\int{\sin{\left(\left(x + 2\right)^{2} \right)} d x} = \frac{\sqrt{2} \sqrt{\pi} S\left(\frac{\sqrt{2} \left(x + 2\right)}{\sqrt{\pi}}\right)}{2}+C$$
Respuesta
$$$\int \sin{\left(\left(x + 2\right)^{2} \right)}\, dx = \frac{\sqrt{2} \sqrt{\pi} S\left(\frac{\sqrt{2} \left(x + 2\right)}{\sqrt{\pi}}\right)}{2} + C$$$A