$$$\sin{\left(\left(x + 2\right)^{2} \right)}$$$の積分
関連する計算機: 定積分・広義積分計算機
入力内容
$$$\int \sin{\left(\left(x + 2\right)^{2} \right)}\, dx$$$ を求めよ。
解答
$$$u=x + 2$$$ とする。
すると $$$du=\left(x + 2\right)^{\prime }dx = 1 dx$$$(手順は»で確認できます)、$$$dx = du$$$ となります。
この積分は次のように書き換えられる
$${\color{red}{\int{\sin{\left(\left(x + 2\right)^{2} \right)} d x}}} = {\color{red}{\int{\sin{\left(u^{2} \right)} d u}}}$$
この積分(フレネル正弦積分)には閉形式はありません:
$${\color{red}{\int{\sin{\left(u^{2} \right)} d u}}} = {\color{red}{\left(\frac{\sqrt{2} \sqrt{\pi} S\left(\frac{\sqrt{2} u}{\sqrt{\pi}}\right)}{2}\right)}}$$
次のことを思い出してください $$$u=x + 2$$$:
$$\frac{\sqrt{2} \sqrt{\pi} S\left(\frac{\sqrt{2} {\color{red}{u}}}{\sqrt{\pi}}\right)}{2} = \frac{\sqrt{2} \sqrt{\pi} S\left(\frac{\sqrt{2} {\color{red}{\left(x + 2\right)}}}{\sqrt{\pi}}\right)}{2}$$
したがって、
$$\int{\sin{\left(\left(x + 2\right)^{2} \right)} d x} = \frac{\sqrt{2} \sqrt{\pi} S\left(\frac{\sqrt{2} \left(x + 2\right)}{\sqrt{\pi}}\right)}{2}$$
積分定数を加える:
$$\int{\sin{\left(\left(x + 2\right)^{2} \right)} d x} = \frac{\sqrt{2} \sqrt{\pi} S\left(\frac{\sqrt{2} \left(x + 2\right)}{\sqrt{\pi}}\right)}{2}+C$$
解答
$$$\int \sin{\left(\left(x + 2\right)^{2} \right)}\, dx = \frac{\sqrt{2} \sqrt{\pi} S\left(\frac{\sqrt{2} \left(x + 2\right)}{\sqrt{\pi}}\right)}{2} + C$$$A