Integral de $$$- n + \sigma^{3}$$$ em relação a $$$n$$$

A calculadora encontrará a integral/primitiva de $$$- n + \sigma^{3}$$$ em relação a $$$n$$$, com os passos mostrados.

Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias

Por favor, escreva sem diferenciais tais como $$$dx$$$, $$$dy$$$ etc.
Deixe em branco para detecção automática.

Se a calculadora não conseguiu calcular algo ou você identificou um erro, ou se tem uma sugestão/feedback, por favor entre em contato conosco.

Sua entrada

Encontre $$$\int \left(- n + \sigma^{3}\right)\, dn$$$.

Solução

Integre termo a termo:

$${\color{red}{\int{\left(- n + \sigma^{3}\right)d n}}} = {\color{red}{\left(- \int{n d n} + \int{\sigma^{3} d n}\right)}}$$

Aplique a regra da constante $$$\int c\, dn = c n$$$ usando $$$c=\sigma^{3}$$$:

$$- \int{n d n} + {\color{red}{\int{\sigma^{3} d n}}} = - \int{n d n} + {\color{red}{n \sigma^{3}}}$$

Aplique a regra da potência $$$\int n^{n}\, dn = \frac{n^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ com $$$n=1$$$:

$$n \sigma^{3} - {\color{red}{\int{n d n}}}=n \sigma^{3} - {\color{red}{\frac{n^{1 + 1}}{1 + 1}}}=n \sigma^{3} - {\color{red}{\left(\frac{n^{2}}{2}\right)}}$$

Portanto,

$$\int{\left(- n + \sigma^{3}\right)d n} = - \frac{n^{2}}{2} + n \sigma^{3}$$

Simplifique:

$$\int{\left(- n + \sigma^{3}\right)d n} = \frac{n \left(- n + 2 \sigma^{3}\right)}{2}$$

Adicione a constante de integração:

$$\int{\left(- n + \sigma^{3}\right)d n} = \frac{n \left(- n + 2 \sigma^{3}\right)}{2}+C$$

Resposta

$$$\int \left(- n + \sigma^{3}\right)\, dn = \frac{n \left(- n + 2 \sigma^{3}\right)}{2} + C$$$A


Please try a new game Rotatly