Integralen av $$$- n + \sigma^{3}$$$ med avseende på $$$n$$$
Relaterad kalkylator: Kalkylator för bestämda och oegentliga integraler
Din inmatning
Bestäm $$$\int \left(- n + \sigma^{3}\right)\, dn$$$.
Lösning
Integrera termvis:
$${\color{red}{\int{\left(- n + \sigma^{3}\right)d n}}} = {\color{red}{\left(- \int{n d n} + \int{\sigma^{3} d n}\right)}}$$
Tillämpa konstantregeln $$$\int c\, dn = c n$$$ med $$$c=\sigma^{3}$$$:
$$- \int{n d n} + {\color{red}{\int{\sigma^{3} d n}}} = - \int{n d n} + {\color{red}{n \sigma^{3}}}$$
Tillämpa potensregeln $$$\int n^{n}\, dn = \frac{n^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ med $$$n=1$$$:
$$n \sigma^{3} - {\color{red}{\int{n d n}}}=n \sigma^{3} - {\color{red}{\frac{n^{1 + 1}}{1 + 1}}}=n \sigma^{3} - {\color{red}{\left(\frac{n^{2}}{2}\right)}}$$
Alltså,
$$\int{\left(- n + \sigma^{3}\right)d n} = - \frac{n^{2}}{2} + n \sigma^{3}$$
Förenkla:
$$\int{\left(- n + \sigma^{3}\right)d n} = \frac{n \left(- n + 2 \sigma^{3}\right)}{2}$$
Lägg till integrationskonstanten:
$$\int{\left(- n + \sigma^{3}\right)d n} = \frac{n \left(- n + 2 \sigma^{3}\right)}{2}+C$$
Svar
$$$\int \left(- n + \sigma^{3}\right)\, dn = \frac{n \left(- n + 2 \sigma^{3}\right)}{2} + C$$$A