$$$- n + \sigma^{3}$$$ の $$$n$$$ に関する積分
入力内容
$$$\int \left(- n + \sigma^{3}\right)\, dn$$$ を求めよ。
解答
項別に積分せよ:
$${\color{red}{\int{\left(- n + \sigma^{3}\right)d n}}} = {\color{red}{\left(- \int{n d n} + \int{\sigma^{3} d n}\right)}}$$
$$$c=\sigma^{3}$$$ に対して定数則 $$$\int c\, dn = c n$$$ を適用する:
$$- \int{n d n} + {\color{red}{\int{\sigma^{3} d n}}} = - \int{n d n} + {\color{red}{n \sigma^{3}}}$$
$$$n=1$$$ を用いて、べき乗の法則 $$$\int n^{n}\, dn = \frac{n^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ を適用します:
$$n \sigma^{3} - {\color{red}{\int{n d n}}}=n \sigma^{3} - {\color{red}{\frac{n^{1 + 1}}{1 + 1}}}=n \sigma^{3} - {\color{red}{\left(\frac{n^{2}}{2}\right)}}$$
したがって、
$$\int{\left(- n + \sigma^{3}\right)d n} = - \frac{n^{2}}{2} + n \sigma^{3}$$
簡単化せよ:
$$\int{\left(- n + \sigma^{3}\right)d n} = \frac{n \left(- n + 2 \sigma^{3}\right)}{2}$$
積分定数を加える:
$$\int{\left(- n + \sigma^{3}\right)d n} = \frac{n \left(- n + 2 \sigma^{3}\right)}{2}+C$$
解答
$$$\int \left(- n + \sigma^{3}\right)\, dn = \frac{n \left(- n + 2 \sigma^{3}\right)}{2} + C$$$A