$$$- n + \sigma^{3}$$$$$$n$$$ に関する積分

この計算機は、$$$n$$$ に関して $$$- n + \sigma^{3}$$$ の積分/原始関数を、手順を示しながら求めます。

関連する計算機: 定積分・広義積分計算機

$$$dx$$$$$$dy$$$ などの微分記号を使わずに書いてください。
自動検出のため、空欄のままにしてください。

計算機が計算を実行できなかった場合、エラーを見つけた場合、またはご提案・フィードバックがある場合は、お問い合わせください

入力内容

$$$\int \left(- n + \sigma^{3}\right)\, dn$$$ を求めよ。

解答

項別に積分せよ:

$${\color{red}{\int{\left(- n + \sigma^{3}\right)d n}}} = {\color{red}{\left(- \int{n d n} + \int{\sigma^{3} d n}\right)}}$$

$$$c=\sigma^{3}$$$ に対して定数則 $$$\int c\, dn = c n$$$ を適用する:

$$- \int{n d n} + {\color{red}{\int{\sigma^{3} d n}}} = - \int{n d n} + {\color{red}{n \sigma^{3}}}$$

$$$n=1$$$ を用いて、べき乗の法則 $$$\int n^{n}\, dn = \frac{n^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ を適用します:

$$n \sigma^{3} - {\color{red}{\int{n d n}}}=n \sigma^{3} - {\color{red}{\frac{n^{1 + 1}}{1 + 1}}}=n \sigma^{3} - {\color{red}{\left(\frac{n^{2}}{2}\right)}}$$

したがって、

$$\int{\left(- n + \sigma^{3}\right)d n} = - \frac{n^{2}}{2} + n \sigma^{3}$$

簡単化せよ:

$$\int{\left(- n + \sigma^{3}\right)d n} = \frac{n \left(- n + 2 \sigma^{3}\right)}{2}$$

積分定数を加える:

$$\int{\left(- n + \sigma^{3}\right)d n} = \frac{n \left(- n + 2 \sigma^{3}\right)}{2}+C$$

解答

$$$\int \left(- n + \sigma^{3}\right)\, dn = \frac{n \left(- n + 2 \sigma^{3}\right)}{2} + C$$$A


Please try a new game Rotatly