Integral de $$$x^{3} \cos{\left(x^{2} \right)}$$$
Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias
Sua entrada
Encontre $$$\int x^{3} \cos{\left(x^{2} \right)}\, dx$$$.
Solução
Seja $$$u=x^{2}$$$.
Então $$$du=\left(x^{2}\right)^{\prime }dx = 2 x dx$$$ (veja os passos »), e obtemos $$$x dx = \frac{du}{2}$$$.
A integral torna-se
$${\color{red}{\int{x^{3} \cos{\left(x^{2} \right)} d x}}} = {\color{red}{\int{\frac{u \cos{\left(u \right)}}{2} d u}}}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ usando $$$c=\frac{1}{2}$$$ e $$$f{\left(u \right)} = u \cos{\left(u \right)}$$$:
$${\color{red}{\int{\frac{u \cos{\left(u \right)}}{2} d u}}} = {\color{red}{\left(\frac{\int{u \cos{\left(u \right)} d u}}{2}\right)}}$$
Para a integral $$$\int{u \cos{\left(u \right)} d u}$$$, use integração por partes $$$\int \operatorname{m} \operatorname{dv} = \operatorname{m}\operatorname{v} - \int \operatorname{v} \operatorname{dm}$$$.
Sejam $$$\operatorname{m}=u$$$ e $$$\operatorname{dv}=\cos{\left(u \right)} du$$$.
Então $$$\operatorname{dm}=\left(u\right)^{\prime }du=1 du$$$ (os passos podem ser vistos ») e $$$\operatorname{v}=\int{\cos{\left(u \right)} d u}=\sin{\left(u \right)}$$$ (os passos podem ser vistos »).
Logo,
$$\frac{{\color{red}{\int{u \cos{\left(u \right)} d u}}}}{2}=\frac{{\color{red}{\left(u \cdot \sin{\left(u \right)}-\int{\sin{\left(u \right)} \cdot 1 d u}\right)}}}{2}=\frac{{\color{red}{\left(u \sin{\left(u \right)} - \int{\sin{\left(u \right)} d u}\right)}}}{2}$$
A integral do seno é $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:
$$\frac{u \sin{\left(u \right)}}{2} - \frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{2} = \frac{u \sin{\left(u \right)}}{2} - \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{2}$$
Recorde que $$$u=x^{2}$$$:
$$\frac{\cos{\left({\color{red}{u}} \right)}}{2} + \frac{{\color{red}{u}} \sin{\left({\color{red}{u}} \right)}}{2} = \frac{\cos{\left({\color{red}{x^{2}}} \right)}}{2} + \frac{{\color{red}{x^{2}}} \sin{\left({\color{red}{x^{2}}} \right)}}{2}$$
Portanto,
$$\int{x^{3} \cos{\left(x^{2} \right)} d x} = \frac{x^{2} \sin{\left(x^{2} \right)}}{2} + \frac{\cos{\left(x^{2} \right)}}{2}$$
Simplifique:
$$\int{x^{3} \cos{\left(x^{2} \right)} d x} = \frac{x^{2} \sin{\left(x^{2} \right)} + \cos{\left(x^{2} \right)}}{2}$$
Adicione a constante de integração:
$$\int{x^{3} \cos{\left(x^{2} \right)} d x} = \frac{x^{2} \sin{\left(x^{2} \right)} + \cos{\left(x^{2} \right)}}{2}+C$$
Resposta
$$$\int x^{3} \cos{\left(x^{2} \right)}\, dx = \frac{x^{2} \sin{\left(x^{2} \right)} + \cos{\left(x^{2} \right)}}{2} + C$$$A