Integrale di $$$x^{3} \cos{\left(x^{2} \right)}$$$

La calcolatrice troverà l'integrale/primitiva di $$$x^{3} \cos{\left(x^{2} \right)}$$$, mostrando i passaggi.

Calcolatore correlato: Calcolatore di integrali definiti e impropri

Scrivi senza usare differenziali come $$$dx$$$, $$$dy$$$, ecc.
Lascia vuoto per il rilevamento automatico.

Se il calcolatore non è riuscito a calcolare qualcosa, oppure hai riscontrato un errore, o hai un suggerimento o un feedback, ti preghiamo di contattarci.

Il tuo input

Trova $$$\int x^{3} \cos{\left(x^{2} \right)}\, dx$$$.

Soluzione

Sia $$$u=x^{2}$$$.

Quindi $$$du=\left(x^{2}\right)^{\prime }dx = 2 x dx$$$ (i passaggi si possono vedere »), e si ha che $$$x dx = \frac{du}{2}$$$.

Quindi,

$${\color{red}{\int{x^{3} \cos{\left(x^{2} \right)} d x}}} = {\color{red}{\int{\frac{u \cos{\left(u \right)}}{2} d u}}}$$

Applica la regola del fattore costante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=\frac{1}{2}$$$ e $$$f{\left(u \right)} = u \cos{\left(u \right)}$$$:

$${\color{red}{\int{\frac{u \cos{\left(u \right)}}{2} d u}}} = {\color{red}{\left(\frac{\int{u \cos{\left(u \right)} d u}}{2}\right)}}$$

Per l'integrale $$$\int{u \cos{\left(u \right)} d u}$$$, usa l'integrazione per parti $$$\int \operatorname{m} \operatorname{dv} = \operatorname{m}\operatorname{v} - \int \operatorname{v} \operatorname{dm}$$$.

Siano $$$\operatorname{m}=u$$$ e $$$\operatorname{dv}=\cos{\left(u \right)} du$$$.

Quindi $$$\operatorname{dm}=\left(u\right)^{\prime }du=1 du$$$ (i passaggi si possono vedere ») e $$$\operatorname{v}=\int{\cos{\left(u \right)} d u}=\sin{\left(u \right)}$$$ (i passaggi si possono vedere »).

Pertanto,

$$\frac{{\color{red}{\int{u \cos{\left(u \right)} d u}}}}{2}=\frac{{\color{red}{\left(u \cdot \sin{\left(u \right)}-\int{\sin{\left(u \right)} \cdot 1 d u}\right)}}}{2}=\frac{{\color{red}{\left(u \sin{\left(u \right)} - \int{\sin{\left(u \right)} d u}\right)}}}{2}$$

L'integrale del seno è $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:

$$\frac{u \sin{\left(u \right)}}{2} - \frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{2} = \frac{u \sin{\left(u \right)}}{2} - \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{2}$$

Ricordiamo che $$$u=x^{2}$$$:

$$\frac{\cos{\left({\color{red}{u}} \right)}}{2} + \frac{{\color{red}{u}} \sin{\left({\color{red}{u}} \right)}}{2} = \frac{\cos{\left({\color{red}{x^{2}}} \right)}}{2} + \frac{{\color{red}{x^{2}}} \sin{\left({\color{red}{x^{2}}} \right)}}{2}$$

Pertanto,

$$\int{x^{3} \cos{\left(x^{2} \right)} d x} = \frac{x^{2} \sin{\left(x^{2} \right)}}{2} + \frac{\cos{\left(x^{2} \right)}}{2}$$

Semplifica:

$$\int{x^{3} \cos{\left(x^{2} \right)} d x} = \frac{x^{2} \sin{\left(x^{2} \right)} + \cos{\left(x^{2} \right)}}{2}$$

Aggiungi la costante di integrazione:

$$\int{x^{3} \cos{\left(x^{2} \right)} d x} = \frac{x^{2} \sin{\left(x^{2} \right)} + \cos{\left(x^{2} \right)}}{2}+C$$

Risposta

$$$\int x^{3} \cos{\left(x^{2} \right)}\, dx = \frac{x^{2} \sin{\left(x^{2} \right)} + \cos{\left(x^{2} \right)}}{2} + C$$$A


Please try a new game Rotatly