$$$x^{3} \cos{\left(x^{2} \right)}$$$ 的積分
您的輸入
求$$$\int x^{3} \cos{\left(x^{2} \right)}\, dx$$$。
解答
令 $$$u=x^{2}$$$。
則 $$$du=\left(x^{2}\right)^{\prime }dx = 2 x dx$$$ (步驟見»),並可得 $$$x dx = \frac{du}{2}$$$。
因此,
$${\color{red}{\int{x^{3} \cos{\left(x^{2} \right)} d x}}} = {\color{red}{\int{\frac{u \cos{\left(u \right)}}{2} d u}}}$$
套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=\frac{1}{2}$$$ 與 $$$f{\left(u \right)} = u \cos{\left(u \right)}$$$:
$${\color{red}{\int{\frac{u \cos{\left(u \right)}}{2} d u}}} = {\color{red}{\left(\frac{\int{u \cos{\left(u \right)} d u}}{2}\right)}}$$
對於積分 $$$\int{u \cos{\left(u \right)} d u}$$$,使用分部積分法 $$$\int \operatorname{m} \operatorname{dv} = \operatorname{m}\operatorname{v} - \int \operatorname{v} \operatorname{dm}$$$。
令 $$$\operatorname{m}=u$$$ 與 $$$\operatorname{dv}=\cos{\left(u \right)} du$$$。
則 $$$\operatorname{dm}=\left(u\right)^{\prime }du=1 du$$$(步驟見 »),且 $$$\operatorname{v}=\int{\cos{\left(u \right)} d u}=\sin{\left(u \right)}$$$(步驟見 »)。
該積分變為
$$\frac{{\color{red}{\int{u \cos{\left(u \right)} d u}}}}{2}=\frac{{\color{red}{\left(u \cdot \sin{\left(u \right)}-\int{\sin{\left(u \right)} \cdot 1 d u}\right)}}}{2}=\frac{{\color{red}{\left(u \sin{\left(u \right)} - \int{\sin{\left(u \right)} d u}\right)}}}{2}$$
正弦函數的積分為 $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:
$$\frac{u \sin{\left(u \right)}}{2} - \frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{2} = \frac{u \sin{\left(u \right)}}{2} - \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{2}$$
回顧一下 $$$u=x^{2}$$$:
$$\frac{\cos{\left({\color{red}{u}} \right)}}{2} + \frac{{\color{red}{u}} \sin{\left({\color{red}{u}} \right)}}{2} = \frac{\cos{\left({\color{red}{x^{2}}} \right)}}{2} + \frac{{\color{red}{x^{2}}} \sin{\left({\color{red}{x^{2}}} \right)}}{2}$$
因此,
$$\int{x^{3} \cos{\left(x^{2} \right)} d x} = \frac{x^{2} \sin{\left(x^{2} \right)}}{2} + \frac{\cos{\left(x^{2} \right)}}{2}$$
化簡:
$$\int{x^{3} \cos{\left(x^{2} \right)} d x} = \frac{x^{2} \sin{\left(x^{2} \right)} + \cos{\left(x^{2} \right)}}{2}$$
加上積分常數:
$$\int{x^{3} \cos{\left(x^{2} \right)} d x} = \frac{x^{2} \sin{\left(x^{2} \right)} + \cos{\left(x^{2} \right)}}{2}+C$$
答案
$$$\int x^{3} \cos{\left(x^{2} \right)}\, dx = \frac{x^{2} \sin{\left(x^{2} \right)} + \cos{\left(x^{2} \right)}}{2} + C$$$A