$$$x^{3} \cos{\left(x^{2} \right)}$$$'nin integrali
İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı
Girdiniz
Bulun: $$$\int x^{3} \cos{\left(x^{2} \right)}\, dx$$$.
Çözüm
$$$u=x^{2}$$$ olsun.
Böylece $$$du=\left(x^{2}\right)^{\prime }dx = 2 x dx$$$ (adımlar » görülebilir) ve $$$x dx = \frac{du}{2}$$$ elde ederiz.
İntegral şu hale gelir
$${\color{red}{\int{x^{3} \cos{\left(x^{2} \right)} d x}}} = {\color{red}{\int{\frac{u \cos{\left(u \right)}}{2} d u}}}$$
Sabit katsayı kuralı $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$'i $$$c=\frac{1}{2}$$$ ve $$$f{\left(u \right)} = u \cos{\left(u \right)}$$$ ile uygula:
$${\color{red}{\int{\frac{u \cos{\left(u \right)}}{2} d u}}} = {\color{red}{\left(\frac{\int{u \cos{\left(u \right)} d u}}{2}\right)}}$$
$$$\int{u \cos{\left(u \right)} d u}$$$ integrali için, kısmi integrasyonu $$$\int \operatorname{m} \operatorname{dv} = \operatorname{m}\operatorname{v} - \int \operatorname{v} \operatorname{dm}$$$ kullanın.
$$$\operatorname{m}=u$$$ ve $$$\operatorname{dv}=\cos{\left(u \right)} du$$$ olsun.
O halde $$$\operatorname{dm}=\left(u\right)^{\prime }du=1 du$$$ (adımlar için bkz. ») ve $$$\operatorname{v}=\int{\cos{\left(u \right)} d u}=\sin{\left(u \right)}$$$ (adımlar için bkz. »).
İntegral şu hale gelir
$$\frac{{\color{red}{\int{u \cos{\left(u \right)} d u}}}}{2}=\frac{{\color{red}{\left(u \cdot \sin{\left(u \right)}-\int{\sin{\left(u \right)} \cdot 1 d u}\right)}}}{2}=\frac{{\color{red}{\left(u \sin{\left(u \right)} - \int{\sin{\left(u \right)} d u}\right)}}}{2}$$
Sinüsün integrali $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:
$$\frac{u \sin{\left(u \right)}}{2} - \frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{2} = \frac{u \sin{\left(u \right)}}{2} - \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{2}$$
Hatırlayın ki $$$u=x^{2}$$$:
$$\frac{\cos{\left({\color{red}{u}} \right)}}{2} + \frac{{\color{red}{u}} \sin{\left({\color{red}{u}} \right)}}{2} = \frac{\cos{\left({\color{red}{x^{2}}} \right)}}{2} + \frac{{\color{red}{x^{2}}} \sin{\left({\color{red}{x^{2}}} \right)}}{2}$$
Dolayısıyla,
$$\int{x^{3} \cos{\left(x^{2} \right)} d x} = \frac{x^{2} \sin{\left(x^{2} \right)}}{2} + \frac{\cos{\left(x^{2} \right)}}{2}$$
Sadeleştirin:
$$\int{x^{3} \cos{\left(x^{2} \right)} d x} = \frac{x^{2} \sin{\left(x^{2} \right)} + \cos{\left(x^{2} \right)}}{2}$$
İntegrasyon sabitini ekleyin:
$$\int{x^{3} \cos{\left(x^{2} \right)} d x} = \frac{x^{2} \sin{\left(x^{2} \right)} + \cos{\left(x^{2} \right)}}{2}+C$$
Cevap
$$$\int x^{3} \cos{\left(x^{2} \right)}\, dx = \frac{x^{2} \sin{\left(x^{2} \right)} + \cos{\left(x^{2} \right)}}{2} + C$$$A