Integral de $$$2 \cos{\left(x^{2} \right)}$$$

A calculadora encontrará a integral/antiderivada de $$$2 \cos{\left(x^{2} \right)}$$$, com os passos mostrados.

Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias

Por favor, escreva sem diferenciais tais como $$$dx$$$, $$$dy$$$ etc.
Deixe em branco para detecção automática.

Se a calculadora não conseguiu calcular algo ou você identificou um erro, ou se tem uma sugestão/feedback, por favor entre em contato conosco.

Sua entrada

Encontre $$$\int 2 \cos{\left(x^{2} \right)}\, dx$$$.

Solução

Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=2$$$ e $$$f{\left(x \right)} = \cos{\left(x^{2} \right)}$$$:

$${\color{red}{\int{2 \cos{\left(x^{2} \right)} d x}}} = {\color{red}{\left(2 \int{\cos{\left(x^{2} \right)} d x}\right)}}$$

Esta integral (Integral de Fresnel do cosseno) não possui forma fechada:

$$2 {\color{red}{\int{\cos{\left(x^{2} \right)} d x}}} = 2 {\color{red}{\left(\frac{\sqrt{2} \sqrt{\pi} C\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right)}{2}\right)}}$$

Portanto,

$$\int{2 \cos{\left(x^{2} \right)} d x} = \sqrt{2} \sqrt{\pi} C\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right)$$

Adicione a constante de integração:

$$\int{2 \cos{\left(x^{2} \right)} d x} = \sqrt{2} \sqrt{\pi} C\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right)+C$$

Resposta

$$$\int 2 \cos{\left(x^{2} \right)}\, dx = \sqrt{2} \sqrt{\pi} C\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right) + C$$$A


Please try a new game Rotatly