$$$2 \cos{\left(x^{2} \right)}$$$ 的積分
您的輸入
求$$$\int 2 \cos{\left(x^{2} \right)}\, dx$$$。
解答
套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=2$$$ 與 $$$f{\left(x \right)} = \cos{\left(x^{2} \right)}$$$:
$${\color{red}{\int{2 \cos{\left(x^{2} \right)} d x}}} = {\color{red}{\left(2 \int{\cos{\left(x^{2} \right)} d x}\right)}}$$
此積分(菲涅耳餘弦積分)不存在閉式表示:
$$2 {\color{red}{\int{\cos{\left(x^{2} \right)} d x}}} = 2 {\color{red}{\left(\frac{\sqrt{2} \sqrt{\pi} C\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right)}{2}\right)}}$$
因此,
$$\int{2 \cos{\left(x^{2} \right)} d x} = \sqrt{2} \sqrt{\pi} C\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right)$$
加上積分常數:
$$\int{2 \cos{\left(x^{2} \right)} d x} = \sqrt{2} \sqrt{\pi} C\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right)+C$$
答案
$$$\int 2 \cos{\left(x^{2} \right)}\, dx = \sqrt{2} \sqrt{\pi} C\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right) + C$$$A