Integral de $$$2 \cos{\left(x^{2} \right)}$$$
Calculadora relacionada: Calculadora de integrales definidas e impropias
Tu entrada
Halla $$$\int 2 \cos{\left(x^{2} \right)}\, dx$$$.
Solución
Aplica la regla del factor constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=2$$$ y $$$f{\left(x \right)} = \cos{\left(x^{2} \right)}$$$:
$${\color{red}{\int{2 \cos{\left(x^{2} \right)} d x}}} = {\color{red}{\left(2 \int{\cos{\left(x^{2} \right)} d x}\right)}}$$
Esta integral (Integral del coseno de Fresnel) no tiene una forma cerrada:
$$2 {\color{red}{\int{\cos{\left(x^{2} \right)} d x}}} = 2 {\color{red}{\left(\frac{\sqrt{2} \sqrt{\pi} C\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right)}{2}\right)}}$$
Por lo tanto,
$$\int{2 \cos{\left(x^{2} \right)} d x} = \sqrt{2} \sqrt{\pi} C\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right)$$
Añade la constante de integración:
$$\int{2 \cos{\left(x^{2} \right)} d x} = \sqrt{2} \sqrt{\pi} C\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right)+C$$
Respuesta
$$$\int 2 \cos{\left(x^{2} \right)}\, dx = \sqrt{2} \sqrt{\pi} C\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right) + C$$$A