$$$2 \cos{\left(x^{2} \right)}$$$'nin integrali
İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı
Girdiniz
Bulun: $$$\int 2 \cos{\left(x^{2} \right)}\, dx$$$.
Çözüm
Sabit katsayı kuralı $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$'i $$$c=2$$$ ve $$$f{\left(x \right)} = \cos{\left(x^{2} \right)}$$$ ile uygula:
$${\color{red}{\int{2 \cos{\left(x^{2} \right)} d x}}} = {\color{red}{\left(2 \int{\cos{\left(x^{2} \right)} d x}\right)}}$$
Bu integralin (Fresnel Kosinüs İntegrali) kapalı biçimli bir ifadesi yok:
$$2 {\color{red}{\int{\cos{\left(x^{2} \right)} d x}}} = 2 {\color{red}{\left(\frac{\sqrt{2} \sqrt{\pi} C\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right)}{2}\right)}}$$
Dolayısıyla,
$$\int{2 \cos{\left(x^{2} \right)} d x} = \sqrt{2} \sqrt{\pi} C\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right)$$
İntegrasyon sabitini ekleyin:
$$\int{2 \cos{\left(x^{2} \right)} d x} = \sqrt{2} \sqrt{\pi} C\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right)+C$$
Cevap
$$$\int 2 \cos{\left(x^{2} \right)}\, dx = \sqrt{2} \sqrt{\pi} C\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right) + C$$$A