Integral de $$$\frac{2^{- t}}{5}$$$

A calculadora encontrará a integral/antiderivada de $$$\frac{2^{- t}}{5}$$$, com os passos mostrados.

Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias

Por favor, escreva sem diferenciais tais como $$$dx$$$, $$$dy$$$ etc.
Deixe em branco para detecção automática.

Se a calculadora não conseguiu calcular algo ou você identificou um erro, ou se tem uma sugestão/feedback, por favor entre em contato conosco.

Sua entrada

Encontre $$$\int \frac{2^{- t}}{5}\, dt$$$.

Solução

Aplique a regra do múltiplo constante $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ usando $$$c=\frac{1}{5}$$$ e $$$f{\left(t \right)} = 2^{- t}$$$:

$${\color{red}{\int{\frac{2^{- t}}{5} d t}}} = {\color{red}{\left(\frac{\int{2^{- t} d t}}{5}\right)}}$$

Seja $$$u=- t$$$.

Então $$$du=\left(- t\right)^{\prime }dt = - dt$$$ (veja os passos »), e obtemos $$$dt = - du$$$.

Logo,

$$\frac{{\color{red}{\int{2^{- t} d t}}}}{5} = \frac{{\color{red}{\int{\left(- 2^{u}\right)d u}}}}{5}$$

Aplique a regra do múltiplo constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ usando $$$c=-1$$$ e $$$f{\left(u \right)} = 2^{u}$$$:

$$\frac{{\color{red}{\int{\left(- 2^{u}\right)d u}}}}{5} = \frac{{\color{red}{\left(- \int{2^{u} d u}\right)}}}{5}$$

Apply the exponential rule $$$\int{a^{u} d u} = \frac{a^{u}}{\ln{\left(a \right)}}$$$ with $$$a=2$$$:

$$- \frac{{\color{red}{\int{2^{u} d u}}}}{5} = - \frac{{\color{red}{\frac{2^{u}}{\ln{\left(2 \right)}}}}}{5}$$

Recorde que $$$u=- t$$$:

$$- \frac{2^{{\color{red}{u}}}}{5 \ln{\left(2 \right)}} = - \frac{2^{{\color{red}{\left(- t\right)}}}}{5 \ln{\left(2 \right)}}$$

Portanto,

$$\int{\frac{2^{- t}}{5} d t} = - \frac{2^{- t}}{5 \ln{\left(2 \right)}}$$

Adicione a constante de integração:

$$\int{\frac{2^{- t}}{5} d t} = - \frac{2^{- t}}{5 \ln{\left(2 \right)}}+C$$

Resposta

$$$\int \frac{2^{- t}}{5}\, dt = - \frac{2^{- t}}{5 \ln\left(2\right)} + C$$$A


Please try a new game Rotatly