Integral de $$$\frac{2^{- t}}{5}$$$

La calculadora encontrará la integral/antiderivada de $$$\frac{2^{- t}}{5}$$$, mostrando los pasos.

Calculadora relacionada: Calculadora de integrales definidas e impropias

Por favor, escriba sin diferenciales como $$$dx$$$, $$$dy$$$, etc.
Deje en blanco para la detección automática.

Si la calculadora no pudo calcular algo, ha identificado un error o tiene una sugerencia o comentario, por favor contáctenos.

Tu entrada

Halla $$$\int \frac{2^{- t}}{5}\, dt$$$.

Solución

Aplica la regla del factor constante $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ con $$$c=\frac{1}{5}$$$ y $$$f{\left(t \right)} = 2^{- t}$$$:

$${\color{red}{\int{\frac{2^{- t}}{5} d t}}} = {\color{red}{\left(\frac{\int{2^{- t} d t}}{5}\right)}}$$

Sea $$$u=- t$$$.

Entonces $$$du=\left(- t\right)^{\prime }dt = - dt$$$ (los pasos pueden verse »), y obtenemos que $$$dt = - du$$$.

Por lo tanto,

$$\frac{{\color{red}{\int{2^{- t} d t}}}}{5} = \frac{{\color{red}{\int{\left(- 2^{u}\right)d u}}}}{5}$$

Aplica la regla del factor constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=-1$$$ y $$$f{\left(u \right)} = 2^{u}$$$:

$$\frac{{\color{red}{\int{\left(- 2^{u}\right)d u}}}}{5} = \frac{{\color{red}{\left(- \int{2^{u} d u}\right)}}}{5}$$

Apply the exponential rule $$$\int{a^{u} d u} = \frac{a^{u}}{\ln{\left(a \right)}}$$$ with $$$a=2$$$:

$$- \frac{{\color{red}{\int{2^{u} d u}}}}{5} = - \frac{{\color{red}{\frac{2^{u}}{\ln{\left(2 \right)}}}}}{5}$$

Recordemos que $$$u=- t$$$:

$$- \frac{2^{{\color{red}{u}}}}{5 \ln{\left(2 \right)}} = - \frac{2^{{\color{red}{\left(- t\right)}}}}{5 \ln{\left(2 \right)}}$$

Por lo tanto,

$$\int{\frac{2^{- t}}{5} d t} = - \frac{2^{- t}}{5 \ln{\left(2 \right)}}$$

Añade la constante de integración:

$$\int{\frac{2^{- t}}{5} d t} = - \frac{2^{- t}}{5 \ln{\left(2 \right)}}+C$$

Respuesta

$$$\int \frac{2^{- t}}{5}\, dt = - \frac{2^{- t}}{5 \ln\left(2\right)} + C$$$A


Please try a new game Rotatly