Intégrale de $$$\frac{2^{- t}}{5}$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int \frac{2^{- t}}{5}\, dt$$$.
Solution
Appliquez la règle du facteur constant $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ avec $$$c=\frac{1}{5}$$$ et $$$f{\left(t \right)} = 2^{- t}$$$ :
$${\color{red}{\int{\frac{2^{- t}}{5} d t}}} = {\color{red}{\left(\frac{\int{2^{- t} d t}}{5}\right)}}$$
Soit $$$u=- t$$$.
Alors $$$du=\left(- t\right)^{\prime }dt = - dt$$$ (les étapes peuvent être vues »), et nous obtenons $$$dt = - du$$$.
Ainsi,
$$\frac{{\color{red}{\int{2^{- t} d t}}}}{5} = \frac{{\color{red}{\int{\left(- 2^{u}\right)d u}}}}{5}$$
Appliquez la règle du facteur constant $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ avec $$$c=-1$$$ et $$$f{\left(u \right)} = 2^{u}$$$ :
$$\frac{{\color{red}{\int{\left(- 2^{u}\right)d u}}}}{5} = \frac{{\color{red}{\left(- \int{2^{u} d u}\right)}}}{5}$$
Apply the exponential rule $$$\int{a^{u} d u} = \frac{a^{u}}{\ln{\left(a \right)}}$$$ with $$$a=2$$$:
$$- \frac{{\color{red}{\int{2^{u} d u}}}}{5} = - \frac{{\color{red}{\frac{2^{u}}{\ln{\left(2 \right)}}}}}{5}$$
Rappelons que $$$u=- t$$$ :
$$- \frac{2^{{\color{red}{u}}}}{5 \ln{\left(2 \right)}} = - \frac{2^{{\color{red}{\left(- t\right)}}}}{5 \ln{\left(2 \right)}}$$
Par conséquent,
$$\int{\frac{2^{- t}}{5} d t} = - \frac{2^{- t}}{5 \ln{\left(2 \right)}}$$
Ajouter la constante d'intégration :
$$\int{\frac{2^{- t}}{5} d t} = - \frac{2^{- t}}{5 \ln{\left(2 \right)}}+C$$
Réponse
$$$\int \frac{2^{- t}}{5}\, dt = - \frac{2^{- t}}{5 \ln\left(2\right)} + C$$$A