Integral of $$$\frac{2^{- t}}{5}$$$

The calculator will find the integral/antiderivative of $$$\frac{2^{- t}}{5}$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int \frac{2^{- t}}{5}\, dt$$$.

Solution

Apply the constant multiple rule $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ with $$$c=\frac{1}{5}$$$ and $$$f{\left(t \right)} = 2^{- t}$$$:

$${\color{red}{\int{\frac{2^{- t}}{5} d t}}} = {\color{red}{\left(\frac{\int{2^{- t} d t}}{5}\right)}}$$

Let $$$u=- t$$$.

Then $$$du=\left(- t\right)^{\prime }dt = - dt$$$ (steps can be seen »), and we have that $$$dt = - du$$$.

The integral becomes

$$\frac{{\color{red}{\int{2^{- t} d t}}}}{5} = \frac{{\color{red}{\int{\left(- 2^{u}\right)d u}}}}{5}$$

Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=-1$$$ and $$$f{\left(u \right)} = 2^{u}$$$:

$$\frac{{\color{red}{\int{\left(- 2^{u}\right)d u}}}}{5} = \frac{{\color{red}{\left(- \int{2^{u} d u}\right)}}}{5}$$

Apply the exponential rule $$$\int{a^{u} d u} = \frac{a^{u}}{\ln{\left(a \right)}}$$$ with $$$a=2$$$:

$$- \frac{{\color{red}{\int{2^{u} d u}}}}{5} = - \frac{{\color{red}{\frac{2^{u}}{\ln{\left(2 \right)}}}}}{5}$$

Recall that $$$u=- t$$$:

$$- \frac{2^{{\color{red}{u}}}}{5 \ln{\left(2 \right)}} = - \frac{2^{{\color{red}{\left(- t\right)}}}}{5 \ln{\left(2 \right)}}$$

Therefore,

$$\int{\frac{2^{- t}}{5} d t} = - \frac{2^{- t}}{5 \ln{\left(2 \right)}}$$

Add the constant of integration:

$$\int{\frac{2^{- t}}{5} d t} = - \frac{2^{- t}}{5 \ln{\left(2 \right)}}+C$$

Answer

$$$\int \frac{2^{- t}}{5}\, dt = - \frac{2^{- t}}{5 \ln\left(2\right)} + C$$$A


Please try a new game Rotatly