Integral de $$$\frac{1}{a - x^{2}}$$$ em relação a $$$x$$$
Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias
Sua entrada
Encontre $$$\int \frac{1}{a - x^{2}}\, dx$$$.
Solução
Seja $$$u=x \sqrt{- \frac{1}{a}}$$$.
Então $$$du=\left(x \sqrt{- \frac{1}{a}}\right)^{\prime }dx = \sqrt{- \frac{1}{a}} dx$$$ (veja os passos »), e obtemos $$$dx = \frac{du}{\sqrt{- \frac{1}{a}}}$$$.
A integral pode ser reescrita como
$${\color{red}{\int{\frac{1}{a - x^{2}} d x}}} = {\color{red}{\int{\frac{\sqrt{- a}}{a \left(u^{2} + 1\right)} d u}}}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ usando $$$c=\frac{\sqrt{- a}}{a}$$$ e $$$f{\left(u \right)} = \frac{1}{u^{2} + 1}$$$:
$${\color{red}{\int{\frac{\sqrt{- a}}{a \left(u^{2} + 1\right)} d u}}} = {\color{red}{\frac{\sqrt{- a} \int{\frac{1}{u^{2} + 1} d u}}{a}}}$$
A integral de $$$\frac{1}{u^{2} + 1}$$$ é $$$\int{\frac{1}{u^{2} + 1} d u} = \operatorname{atan}{\left(u \right)}$$$:
$$\frac{\sqrt{- a} {\color{red}{\int{\frac{1}{u^{2} + 1} d u}}}}{a} = \frac{\sqrt{- a} {\color{red}{\operatorname{atan}{\left(u \right)}}}}{a}$$
Recorde que $$$u=x \sqrt{- \frac{1}{a}}$$$:
$$\frac{\sqrt{- a} \operatorname{atan}{\left({\color{red}{u}} \right)}}{a} = \frac{\sqrt{- a} \operatorname{atan}{\left({\color{red}{x \sqrt{- \frac{1}{a}}}} \right)}}{a}$$
Portanto,
$$\int{\frac{1}{a - x^{2}} d x} = \frac{\sqrt{- a} \operatorname{atan}{\left(x \sqrt{- \frac{1}{a}} \right)}}{a}$$
Simplifique:
$$\int{\frac{1}{a - x^{2}} d x} = - \frac{\operatorname{atan}{\left(x \sqrt{- \frac{1}{a}} \right)}}{\sqrt{- a}}$$
Adicione a constante de integração:
$$\int{\frac{1}{a - x^{2}} d x} = - \frac{\operatorname{atan}{\left(x \sqrt{- \frac{1}{a}} \right)}}{\sqrt{- a}}+C$$
Resposta
$$$\int \frac{1}{a - x^{2}}\, dx = - \frac{\operatorname{atan}{\left(x \sqrt{- \frac{1}{a}} \right)}}{\sqrt{- a}} + C$$$A