$$$\frac{1}{a - x^{2}}$$$ 关于$$$x$$$的积分

该计算器将求出$$$\frac{1}{a - x^{2}}$$$关于$$$x$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int \frac{1}{a - x^{2}}\, dx$$$

解答

$$$u=x \sqrt{- \frac{1}{a}}$$$

$$$du=\left(x \sqrt{- \frac{1}{a}}\right)^{\prime }dx = \sqrt{- \frac{1}{a}} dx$$$ (步骤见»),并有$$$dx = \frac{du}{\sqrt{- \frac{1}{a}}}$$$

所以,

$${\color{red}{\int{\frac{1}{a - x^{2}} d x}}} = {\color{red}{\int{\frac{\sqrt{- a}}{a \left(u^{2} + 1\right)} d u}}}$$

$$$c=\frac{\sqrt{- a}}{a}$$$$$$f{\left(u \right)} = \frac{1}{u^{2} + 1}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$

$${\color{red}{\int{\frac{\sqrt{- a}}{a \left(u^{2} + 1\right)} d u}}} = {\color{red}{\frac{\sqrt{- a} \int{\frac{1}{u^{2} + 1} d u}}{a}}}$$

$$$\frac{1}{u^{2} + 1}$$$ 的积分为 $$$\int{\frac{1}{u^{2} + 1} d u} = \operatorname{atan}{\left(u \right)}$$$:

$$\frac{\sqrt{- a} {\color{red}{\int{\frac{1}{u^{2} + 1} d u}}}}{a} = \frac{\sqrt{- a} {\color{red}{\operatorname{atan}{\left(u \right)}}}}{a}$$

回忆一下 $$$u=x \sqrt{- \frac{1}{a}}$$$:

$$\frac{\sqrt{- a} \operatorname{atan}{\left({\color{red}{u}} \right)}}{a} = \frac{\sqrt{- a} \operatorname{atan}{\left({\color{red}{x \sqrt{- \frac{1}{a}}}} \right)}}{a}$$

因此,

$$\int{\frac{1}{a - x^{2}} d x} = \frac{\sqrt{- a} \operatorname{atan}{\left(x \sqrt{- \frac{1}{a}} \right)}}{a}$$

化简:

$$\int{\frac{1}{a - x^{2}} d x} = - \frac{\operatorname{atan}{\left(x \sqrt{- \frac{1}{a}} \right)}}{\sqrt{- a}}$$

加上积分常数:

$$\int{\frac{1}{a - x^{2}} d x} = - \frac{\operatorname{atan}{\left(x \sqrt{- \frac{1}{a}} \right)}}{\sqrt{- a}}+C$$

答案

$$$\int \frac{1}{a - x^{2}}\, dx = - \frac{\operatorname{atan}{\left(x \sqrt{- \frac{1}{a}} \right)}}{\sqrt{- a}} + C$$$A


Please try a new game Rotatly