$$$\frac{1}{a - x^{2}}$$$$$$x$$$ に関する積分

この計算機は、$$$x$$$ に関して $$$\frac{1}{a - x^{2}}$$$ の積分/原始関数を、手順を示しながら求めます。

関連する計算機: 定積分・広義積分計算機

$$$dx$$$$$$dy$$$ などの微分記号を使わずに書いてください。
自動検出のため、空欄のままにしてください。

計算機が計算を実行できなかった場合、エラーを見つけた場合、またはご提案・フィードバックがある場合は、お問い合わせください

入力内容

$$$\int \frac{1}{a - x^{2}}\, dx$$$ を求めよ。

解答

$$$u=x \sqrt{- \frac{1}{a}}$$$ とする。

すると $$$du=\left(x \sqrt{- \frac{1}{a}}\right)^{\prime }dx = \sqrt{- \frac{1}{a}} dx$$$(手順は»で確認できます)、$$$dx = \frac{du}{\sqrt{- \frac{1}{a}}}$$$ となります。

したがって、

$${\color{red}{\int{\frac{1}{a - x^{2}} d x}}} = {\color{red}{\int{\frac{\sqrt{- a}}{a \left(u^{2} + 1\right)} d u}}}$$

定数倍の法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ を、$$$c=\frac{\sqrt{- a}}{a}$$$$$$f{\left(u \right)} = \frac{1}{u^{2} + 1}$$$ に対して適用する:

$${\color{red}{\int{\frac{\sqrt{- a}}{a \left(u^{2} + 1\right)} d u}}} = {\color{red}{\frac{\sqrt{- a} \int{\frac{1}{u^{2} + 1} d u}}{a}}}$$

$$$\frac{1}{u^{2} + 1}$$$ の不定積分は $$$\int{\frac{1}{u^{2} + 1} d u} = \operatorname{atan}{\left(u \right)}$$$ です:

$$\frac{\sqrt{- a} {\color{red}{\int{\frac{1}{u^{2} + 1} d u}}}}{a} = \frac{\sqrt{- a} {\color{red}{\operatorname{atan}{\left(u \right)}}}}{a}$$

次のことを思い出してください $$$u=x \sqrt{- \frac{1}{a}}$$$:

$$\frac{\sqrt{- a} \operatorname{atan}{\left({\color{red}{u}} \right)}}{a} = \frac{\sqrt{- a} \operatorname{atan}{\left({\color{red}{x \sqrt{- \frac{1}{a}}}} \right)}}{a}$$

したがって、

$$\int{\frac{1}{a - x^{2}} d x} = \frac{\sqrt{- a} \operatorname{atan}{\left(x \sqrt{- \frac{1}{a}} \right)}}{a}$$

簡単化せよ:

$$\int{\frac{1}{a - x^{2}} d x} = - \frac{\operatorname{atan}{\left(x \sqrt{- \frac{1}{a}} \right)}}{\sqrt{- a}}$$

積分定数を加える:

$$\int{\frac{1}{a - x^{2}} d x} = - \frac{\operatorname{atan}{\left(x \sqrt{- \frac{1}{a}} \right)}}{\sqrt{- a}}+C$$

解答

$$$\int \frac{1}{a - x^{2}}\, dx = - \frac{\operatorname{atan}{\left(x \sqrt{- \frac{1}{a}} \right)}}{\sqrt{- a}} + C$$$A


Please try a new game Rotatly