Integral de $$$- e^{2 x}$$$

A calculadora encontrará a integral/antiderivada de $$$- e^{2 x}$$$, com os passos mostrados.

Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias

Por favor, escreva sem diferenciais tais como $$$dx$$$, $$$dy$$$ etc.
Deixe em branco para detecção automática.

Se a calculadora não conseguiu calcular algo ou você identificou um erro, ou se tem uma sugestão/feedback, por favor entre em contato conosco.

Sua entrada

Encontre $$$\int \left(- e^{2 x}\right)\, dx$$$.

Solução

Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=-1$$$ e $$$f{\left(x \right)} = e^{2 x}$$$:

$${\color{red}{\int{\left(- e^{2 x}\right)d x}}} = {\color{red}{\left(- \int{e^{2 x} d x}\right)}}$$

Seja $$$u=2 x$$$.

Então $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (veja os passos »), e obtemos $$$dx = \frac{du}{2}$$$.

Assim,

$$- {\color{red}{\int{e^{2 x} d x}}} = - {\color{red}{\int{\frac{e^{u}}{2} d u}}}$$

Aplique a regra do múltiplo constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ usando $$$c=\frac{1}{2}$$$ e $$$f{\left(u \right)} = e^{u}$$$:

$$- {\color{red}{\int{\frac{e^{u}}{2} d u}}} = - {\color{red}{\left(\frac{\int{e^{u} d u}}{2}\right)}}$$

A integral da função exponencial é $$$\int{e^{u} d u} = e^{u}$$$:

$$- \frac{{\color{red}{\int{e^{u} d u}}}}{2} = - \frac{{\color{red}{e^{u}}}}{2}$$

Recorde que $$$u=2 x$$$:

$$- \frac{e^{{\color{red}{u}}}}{2} = - \frac{e^{{\color{red}{\left(2 x\right)}}}}{2}$$

Portanto,

$$\int{\left(- e^{2 x}\right)d x} = - \frac{e^{2 x}}{2}$$

Adicione a constante de integração:

$$\int{\left(- e^{2 x}\right)d x} = - \frac{e^{2 x}}{2}+C$$

Resposta

$$$\int \left(- e^{2 x}\right)\, dx = - \frac{e^{2 x}}{2} + C$$$A


Please try a new game Rotatly