Integral of $$$- e^{2 x}$$$

The calculator will find the integral/antiderivative of $$$- e^{2 x}$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int \left(- e^{2 x}\right)\, dx$$$.

Solution

Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=-1$$$ and $$$f{\left(x \right)} = e^{2 x}$$$:

$${\color{red}{\int{\left(- e^{2 x}\right)d x}}} = {\color{red}{\left(- \int{e^{2 x} d x}\right)}}$$

Let $$$u=2 x$$$.

Then $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (steps can be seen »), and we have that $$$dx = \frac{du}{2}$$$.

The integral can be rewritten as

$$- {\color{red}{\int{e^{2 x} d x}}} = - {\color{red}{\int{\frac{e^{u}}{2} d u}}}$$

Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=\frac{1}{2}$$$ and $$$f{\left(u \right)} = e^{u}$$$:

$$- {\color{red}{\int{\frac{e^{u}}{2} d u}}} = - {\color{red}{\left(\frac{\int{e^{u} d u}}{2}\right)}}$$

The integral of the exponential function is $$$\int{e^{u} d u} = e^{u}$$$:

$$- \frac{{\color{red}{\int{e^{u} d u}}}}{2} = - \frac{{\color{red}{e^{u}}}}{2}$$

Recall that $$$u=2 x$$$:

$$- \frac{e^{{\color{red}{u}}}}{2} = - \frac{e^{{\color{red}{\left(2 x\right)}}}}{2}$$

Therefore,

$$\int{\left(- e^{2 x}\right)d x} = - \frac{e^{2 x}}{2}$$

Add the constant of integration:

$$\int{\left(- e^{2 x}\right)d x} = - \frac{e^{2 x}}{2}+C$$

Answer

$$$\int \left(- e^{2 x}\right)\, dx = - \frac{e^{2 x}}{2} + C$$$A


Please try a new game Rotatly