$$$- e^{2 x}$$$ 的積分
您的輸入
求$$$\int \left(- e^{2 x}\right)\, dx$$$。
解答
套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=-1$$$ 與 $$$f{\left(x \right)} = e^{2 x}$$$:
$${\color{red}{\int{\left(- e^{2 x}\right)d x}}} = {\color{red}{\left(- \int{e^{2 x} d x}\right)}}$$
令 $$$u=2 x$$$。
則 $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (步驟見»),並可得 $$$dx = \frac{du}{2}$$$。
該積分可改寫為
$$- {\color{red}{\int{e^{2 x} d x}}} = - {\color{red}{\int{\frac{e^{u}}{2} d u}}}$$
套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=\frac{1}{2}$$$ 與 $$$f{\left(u \right)} = e^{u}$$$:
$$- {\color{red}{\int{\frac{e^{u}}{2} d u}}} = - {\color{red}{\left(\frac{\int{e^{u} d u}}{2}\right)}}$$
指數函數的積分為 $$$\int{e^{u} d u} = e^{u}$$$:
$$- \frac{{\color{red}{\int{e^{u} d u}}}}{2} = - \frac{{\color{red}{e^{u}}}}{2}$$
回顧一下 $$$u=2 x$$$:
$$- \frac{e^{{\color{red}{u}}}}{2} = - \frac{e^{{\color{red}{\left(2 x\right)}}}}{2}$$
因此,
$$\int{\left(- e^{2 x}\right)d x} = - \frac{e^{2 x}}{2}$$
加上積分常數:
$$\int{\left(- e^{2 x}\right)d x} = - \frac{e^{2 x}}{2}+C$$
答案
$$$\int \left(- e^{2 x}\right)\, dx = - \frac{e^{2 x}}{2} + C$$$A