$$$- e^{2 x}$$$ 的积分

该计算器将求出$$$- e^{2 x}$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int \left(- e^{2 x}\right)\, dx$$$

解答

$$$c=-1$$$$$$f{\left(x \right)} = e^{2 x}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$

$${\color{red}{\int{\left(- e^{2 x}\right)d x}}} = {\color{red}{\left(- \int{e^{2 x} d x}\right)}}$$

$$$u=2 x$$$

$$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (步骤见»),并有$$$dx = \frac{du}{2}$$$

因此,

$$- {\color{red}{\int{e^{2 x} d x}}} = - {\color{red}{\int{\frac{e^{u}}{2} d u}}}$$

$$$c=\frac{1}{2}$$$$$$f{\left(u \right)} = e^{u}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$

$$- {\color{red}{\int{\frac{e^{u}}{2} d u}}} = - {\color{red}{\left(\frac{\int{e^{u} d u}}{2}\right)}}$$

指数函数的积分为 $$$\int{e^{u} d u} = e^{u}$$$

$$- \frac{{\color{red}{\int{e^{u} d u}}}}{2} = - \frac{{\color{red}{e^{u}}}}{2}$$

回忆一下 $$$u=2 x$$$:

$$- \frac{e^{{\color{red}{u}}}}{2} = - \frac{e^{{\color{red}{\left(2 x\right)}}}}{2}$$

因此,

$$\int{\left(- e^{2 x}\right)d x} = - \frac{e^{2 x}}{2}$$

加上积分常数:

$$\int{\left(- e^{2 x}\right)d x} = - \frac{e^{2 x}}{2}+C$$

答案

$$$\int \left(- e^{2 x}\right)\, dx = - \frac{e^{2 x}}{2} + C$$$A


Please try a new game Rotatly