Integraal van $$$\frac{4}{t^{3}}$$$
Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen
Uw invoer
Bepaal $$$\int \frac{4}{t^{3}}\, dt$$$.
Oplossing
Pas de constante-veelvoudregel $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ toe met $$$c=4$$$ en $$$f{\left(t \right)} = \frac{1}{t^{3}}$$$:
$${\color{red}{\int{\frac{4}{t^{3}} d t}}} = {\color{red}{\left(4 \int{\frac{1}{t^{3}} d t}\right)}}$$
Pas de machtsregel $$$\int t^{n}\, dt = \frac{t^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ toe met $$$n=-3$$$:
$$4 {\color{red}{\int{\frac{1}{t^{3}} d t}}}=4 {\color{red}{\int{t^{-3} d t}}}=4 {\color{red}{\frac{t^{-3 + 1}}{-3 + 1}}}=4 {\color{red}{\left(- \frac{t^{-2}}{2}\right)}}=4 {\color{red}{\left(- \frac{1}{2 t^{2}}\right)}}$$
Dus,
$$\int{\frac{4}{t^{3}} d t} = - \frac{2}{t^{2}}$$
Voeg de integratieconstante toe:
$$\int{\frac{4}{t^{3}} d t} = - \frac{2}{t^{2}}+C$$
Antwoord
$$$\int \frac{4}{t^{3}}\, dt = - \frac{2}{t^{2}} + C$$$A