Integrale di $$$\frac{4}{t^{3}}$$$

La calcolatrice troverà l'integrale/primitiva di $$$\frac{4}{t^{3}}$$$, mostrando i passaggi.

Calcolatore correlato: Calcolatore di integrali definiti e impropri

Scrivi senza usare differenziali come $$$dx$$$, $$$dy$$$, ecc.
Lascia vuoto per il rilevamento automatico.

Se il calcolatore non è riuscito a calcolare qualcosa, oppure hai riscontrato un errore, o hai un suggerimento o un feedback, ti preghiamo di contattarci.

Il tuo input

Trova $$$\int \frac{4}{t^{3}}\, dt$$$.

Soluzione

Applica la regola del fattore costante $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ con $$$c=4$$$ e $$$f{\left(t \right)} = \frac{1}{t^{3}}$$$:

$${\color{red}{\int{\frac{4}{t^{3}} d t}}} = {\color{red}{\left(4 \int{\frac{1}{t^{3}} d t}\right)}}$$

Applica la regola della potenza $$$\int t^{n}\, dt = \frac{t^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=-3$$$:

$$4 {\color{red}{\int{\frac{1}{t^{3}} d t}}}=4 {\color{red}{\int{t^{-3} d t}}}=4 {\color{red}{\frac{t^{-3 + 1}}{-3 + 1}}}=4 {\color{red}{\left(- \frac{t^{-2}}{2}\right)}}=4 {\color{red}{\left(- \frac{1}{2 t^{2}}\right)}}$$

Pertanto,

$$\int{\frac{4}{t^{3}} d t} = - \frac{2}{t^{2}}$$

Aggiungi la costante di integrazione:

$$\int{\frac{4}{t^{3}} d t} = - \frac{2}{t^{2}}+C$$

Risposta

$$$\int \frac{4}{t^{3}}\, dt = - \frac{2}{t^{2}} + C$$$A


Please try a new game Rotatly