Integraal van $$$\sin{\left(2 x^{2} \right)}$$$

De calculator zal de integraal/primitieve functie van $$$\sin{\left(2 x^{2} \right)}$$$ bepalen, waarbij de stappen worden weergegeven.

Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen

Schrijf alstublieft zonder differentiëlen zoals $$$dx$$$, $$$dy$$$, enz.
Leeg laten voor automatische detectie.

Als de rekenmachine iets niet heeft berekend, als u een fout hebt ontdekt of als u een suggestie/feedback hebt, neem dan contact met ons op.

Uw invoer

Bepaal $$$\int \sin{\left(2 x^{2} \right)}\, dx$$$.

Oplossing

Zij $$$u=\sqrt{2} x$$$.

Dan $$$du=\left(\sqrt{2} x\right)^{\prime }dx = \sqrt{2} dx$$$ (de stappen zijn te zien »), en dan geldt dat $$$dx = \frac{\sqrt{2} du}{2}$$$.

Dus,

$${\color{red}{\int{\sin{\left(2 x^{2} \right)} d x}}} = {\color{red}{\int{\frac{\sqrt{2} \sin{\left(u^{2} \right)}}{2} d u}}}$$

Pas de constante-veelvoudregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ toe met $$$c=\frac{\sqrt{2}}{2}$$$ en $$$f{\left(u \right)} = \sin{\left(u^{2} \right)}$$$:

$${\color{red}{\int{\frac{\sqrt{2} \sin{\left(u^{2} \right)}}{2} d u}}} = {\color{red}{\left(\frac{\sqrt{2} \int{\sin{\left(u^{2} \right)} d u}}{2}\right)}}$$

Deze integraal (Fresnel-sinusintegraal) heeft geen gesloten vorm:

$$\frac{\sqrt{2} {\color{red}{\int{\sin{\left(u^{2} \right)} d u}}}}{2} = \frac{\sqrt{2} {\color{red}{\left(\frac{\sqrt{2} \sqrt{\pi} S\left(\frac{\sqrt{2} u}{\sqrt{\pi}}\right)}{2}\right)}}}{2}$$

We herinneren eraan dat $$$u=\sqrt{2} x$$$:

$$\frac{\sqrt{\pi} S\left(\frac{\sqrt{2} {\color{red}{u}}}{\sqrt{\pi}}\right)}{2} = \frac{\sqrt{\pi} S\left(\frac{\sqrt{2} {\color{red}{\sqrt{2} x}}}{\sqrt{\pi}}\right)}{2}$$

Dus,

$$\int{\sin{\left(2 x^{2} \right)} d x} = \frac{\sqrt{\pi} S\left(\frac{2 x}{\sqrt{\pi}}\right)}{2}$$

Voeg de integratieconstante toe:

$$\int{\sin{\left(2 x^{2} \right)} d x} = \frac{\sqrt{\pi} S\left(\frac{2 x}{\sqrt{\pi}}\right)}{2}+C$$

Antwoord

$$$\int \sin{\left(2 x^{2} \right)}\, dx = \frac{\sqrt{\pi} S\left(\frac{2 x}{\sqrt{\pi}}\right)}{2} + C$$$A


Please try a new game Rotatly