$$$\sin{\left(2 x^{2} \right)}$$$'nin integrali
İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı
Girdiniz
Bulun: $$$\int \sin{\left(2 x^{2} \right)}\, dx$$$.
Çözüm
$$$u=\sqrt{2} x$$$ olsun.
Böylece $$$du=\left(\sqrt{2} x\right)^{\prime }dx = \sqrt{2} dx$$$ (adımlar » görülebilir) ve $$$dx = \frac{\sqrt{2} du}{2}$$$ elde ederiz.
Dolayısıyla,
$${\color{red}{\int{\sin{\left(2 x^{2} \right)} d x}}} = {\color{red}{\int{\frac{\sqrt{2} \sin{\left(u^{2} \right)}}{2} d u}}}$$
Sabit katsayı kuralı $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$'i $$$c=\frac{\sqrt{2}}{2}$$$ ve $$$f{\left(u \right)} = \sin{\left(u^{2} \right)}$$$ ile uygula:
$${\color{red}{\int{\frac{\sqrt{2} \sin{\left(u^{2} \right)}}{2} d u}}} = {\color{red}{\left(\frac{\sqrt{2} \int{\sin{\left(u^{2} \right)} d u}}{2}\right)}}$$
Bu integralin (Fresnel Sinüs İntegrali) kapalı biçimli bir ifadesi yok:
$$\frac{\sqrt{2} {\color{red}{\int{\sin{\left(u^{2} \right)} d u}}}}{2} = \frac{\sqrt{2} {\color{red}{\left(\frac{\sqrt{2} \sqrt{\pi} S\left(\frac{\sqrt{2} u}{\sqrt{\pi}}\right)}{2}\right)}}}{2}$$
Hatırlayın ki $$$u=\sqrt{2} x$$$:
$$\frac{\sqrt{\pi} S\left(\frac{\sqrt{2} {\color{red}{u}}}{\sqrt{\pi}}\right)}{2} = \frac{\sqrt{\pi} S\left(\frac{\sqrt{2} {\color{red}{\sqrt{2} x}}}{\sqrt{\pi}}\right)}{2}$$
Dolayısıyla,
$$\int{\sin{\left(2 x^{2} \right)} d x} = \frac{\sqrt{\pi} S\left(\frac{2 x}{\sqrt{\pi}}\right)}{2}$$
İntegrasyon sabitini ekleyin:
$$\int{\sin{\left(2 x^{2} \right)} d x} = \frac{\sqrt{\pi} S\left(\frac{2 x}{\sqrt{\pi}}\right)}{2}+C$$
Cevap
$$$\int \sin{\left(2 x^{2} \right)}\, dx = \frac{\sqrt{\pi} S\left(\frac{2 x}{\sqrt{\pi}}\right)}{2} + C$$$A