Integraal van $$$x^{3} e^{4 x^{2}}$$$

De calculator zal de integraal/primitieve functie van $$$x^{3} e^{4 x^{2}}$$$ bepalen, waarbij de stappen worden weergegeven.

Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen

Schrijf alstublieft zonder differentiëlen zoals $$$dx$$$, $$$dy$$$, enz.
Leeg laten voor automatische detectie.

Als de rekenmachine iets niet heeft berekend, als u een fout hebt ontdekt of als u een suggestie/feedback hebt, neem dan contact met ons op.

Uw invoer

Bepaal $$$\int x^{3} e^{4 x^{2}}\, dx$$$.

Oplossing

Zij $$$u=x^{2}$$$.

Dan $$$du=\left(x^{2}\right)^{\prime }dx = 2 x dx$$$ (de stappen zijn te zien »), en dan geldt dat $$$x dx = \frac{du}{2}$$$.

De integraal kan worden herschreven als

$${\color{red}{\int{x^{3} e^{4 x^{2}} d x}}} = {\color{red}{\int{\frac{u e^{4 u}}{2} d u}}}$$

Pas de constante-veelvoudregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ toe met $$$c=\frac{1}{2}$$$ en $$$f{\left(u \right)} = u e^{4 u}$$$:

$${\color{red}{\int{\frac{u e^{4 u}}{2} d u}}} = {\color{red}{\left(\frac{\int{u e^{4 u} d u}}{2}\right)}}$$

Voor de integraal $$$\int{u e^{4 u} d u}$$$, gebruik partiële integratie $$$\int \operatorname{c} \operatorname{dv} = \operatorname{c}\operatorname{v} - \int \operatorname{v} \operatorname{dc}$$$.

Zij $$$\operatorname{c}=u$$$ en $$$\operatorname{dv}=e^{4 u} du$$$.

Dan $$$\operatorname{dc}=\left(u\right)^{\prime }du=1 du$$$ (de stappen zijn te zien ») en $$$\operatorname{v}=\int{e^{4 u} d u}=\frac{e^{4 u}}{4}$$$ (de stappen zijn te zien »).

De integraal kan worden herschreven als

$$\frac{{\color{red}{\int{u e^{4 u} d u}}}}{2}=\frac{{\color{red}{\left(u \cdot \frac{e^{4 u}}{4}-\int{\frac{e^{4 u}}{4} \cdot 1 d u}\right)}}}{2}=\frac{{\color{red}{\left(\frac{u e^{4 u}}{4} - \int{\frac{e^{4 u}}{4} d u}\right)}}}{2}$$

Pas de constante-veelvoudregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ toe met $$$c=\frac{1}{4}$$$ en $$$f{\left(u \right)} = e^{4 u}$$$:

$$\frac{u e^{4 u}}{8} - \frac{{\color{red}{\int{\frac{e^{4 u}}{4} d u}}}}{2} = \frac{u e^{4 u}}{8} - \frac{{\color{red}{\left(\frac{\int{e^{4 u} d u}}{4}\right)}}}{2}$$

Zij $$$v=4 u$$$.

Dan $$$dv=\left(4 u\right)^{\prime }du = 4 du$$$ (de stappen zijn te zien »), en dan geldt dat $$$du = \frac{dv}{4}$$$.

Dus,

$$\frac{u e^{4 u}}{8} - \frac{{\color{red}{\int{e^{4 u} d u}}}}{8} = \frac{u e^{4 u}}{8} - \frac{{\color{red}{\int{\frac{e^{v}}{4} d v}}}}{8}$$

Pas de constante-veelvoudregel $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ toe met $$$c=\frac{1}{4}$$$ en $$$f{\left(v \right)} = e^{v}$$$:

$$\frac{u e^{4 u}}{8} - \frac{{\color{red}{\int{\frac{e^{v}}{4} d v}}}}{8} = \frac{u e^{4 u}}{8} - \frac{{\color{red}{\left(\frac{\int{e^{v} d v}}{4}\right)}}}{8}$$

De integraal van de exponentiële functie is $$$\int{e^{v} d v} = e^{v}$$$:

$$\frac{u e^{4 u}}{8} - \frac{{\color{red}{\int{e^{v} d v}}}}{32} = \frac{u e^{4 u}}{8} - \frac{{\color{red}{e^{v}}}}{32}$$

We herinneren eraan dat $$$v=4 u$$$:

$$\frac{u e^{4 u}}{8} - \frac{e^{{\color{red}{v}}}}{32} = \frac{u e^{4 u}}{8} - \frac{e^{{\color{red}{\left(4 u\right)}}}}{32}$$

We herinneren eraan dat $$$u=x^{2}$$$:

$$- \frac{e^{4 {\color{red}{u}}}}{32} + \frac{{\color{red}{u}} e^{4 {\color{red}{u}}}}{8} = - \frac{e^{4 {\color{red}{x^{2}}}}}{32} + \frac{{\color{red}{x^{2}}} e^{4 {\color{red}{x^{2}}}}}{8}$$

Dus,

$$\int{x^{3} e^{4 x^{2}} d x} = \frac{x^{2} e^{4 x^{2}}}{8} - \frac{e^{4 x^{2}}}{32}$$

Vereenvoudig:

$$\int{x^{3} e^{4 x^{2}} d x} = \frac{\left(4 x^{2} - 1\right) e^{4 x^{2}}}{32}$$

Voeg de integratieconstante toe:

$$\int{x^{3} e^{4 x^{2}} d x} = \frac{\left(4 x^{2} - 1\right) e^{4 x^{2}}}{32}+C$$

Antwoord

$$$\int x^{3} e^{4 x^{2}}\, dx = \frac{\left(4 x^{2} - 1\right) e^{4 x^{2}}}{32} + C$$$A


Please try a new game Rotatly