$$$x^{3} e^{4 x^{2}}$$$의 적분
사용자 입력
$$$\int x^{3} e^{4 x^{2}}\, dx$$$을(를) 구하시오.
풀이
$$$u=x^{2}$$$라 하자.
그러면 $$$du=\left(x^{2}\right)^{\prime }dx = 2 x dx$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$x dx = \frac{du}{2}$$$임을 얻습니다.
따라서,
$${\color{red}{\int{x^{3} e^{4 x^{2}} d x}}} = {\color{red}{\int{\frac{u e^{4 u}}{2} d u}}}$$
상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$을 $$$c=\frac{1}{2}$$$와 $$$f{\left(u \right)} = u e^{4 u}$$$에 적용하세요:
$${\color{red}{\int{\frac{u e^{4 u}}{2} d u}}} = {\color{red}{\left(\frac{\int{u e^{4 u} d u}}{2}\right)}}$$
적분 $$$\int{u e^{4 u} d u}$$$에 대해서는 부분적분법 $$$\int \operatorname{m} \operatorname{dv} = \operatorname{m}\operatorname{v} - \int \operatorname{v} \operatorname{dm}$$$을 사용하십시오.
$$$\operatorname{m}=u$$$와 $$$\operatorname{dv}=e^{4 u} du$$$라고 하자.
그러면 $$$\operatorname{dm}=\left(u\right)^{\prime }du=1 du$$$ (»에서 풀이 과정을 볼 수 있음) 및 $$$\operatorname{v}=\int{e^{4 u} d u}=\frac{e^{4 u}}{4}$$$ (»에서 풀이 과정을 볼 수 있음).
따라서,
$$\frac{{\color{red}{\int{u e^{4 u} d u}}}}{2}=\frac{{\color{red}{\left(u \cdot \frac{e^{4 u}}{4}-\int{\frac{e^{4 u}}{4} \cdot 1 d u}\right)}}}{2}=\frac{{\color{red}{\left(\frac{u e^{4 u}}{4} - \int{\frac{e^{4 u}}{4} d u}\right)}}}{2}$$
상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$을 $$$c=\frac{1}{4}$$$와 $$$f{\left(u \right)} = e^{4 u}$$$에 적용하세요:
$$\frac{u e^{4 u}}{8} - \frac{{\color{red}{\int{\frac{e^{4 u}}{4} d u}}}}{2} = \frac{u e^{4 u}}{8} - \frac{{\color{red}{\left(\frac{\int{e^{4 u} d u}}{4}\right)}}}{2}$$
$$$v=4 u$$$라 하자.
그러면 $$$dv=\left(4 u\right)^{\prime }du = 4 du$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$du = \frac{dv}{4}$$$임을 얻습니다.
따라서,
$$\frac{u e^{4 u}}{8} - \frac{{\color{red}{\int{e^{4 u} d u}}}}{8} = \frac{u e^{4 u}}{8} - \frac{{\color{red}{\int{\frac{e^{v}}{4} d v}}}}{8}$$
상수배 법칙 $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$을 $$$c=\frac{1}{4}$$$와 $$$f{\left(v \right)} = e^{v}$$$에 적용하세요:
$$\frac{u e^{4 u}}{8} - \frac{{\color{red}{\int{\frac{e^{v}}{4} d v}}}}{8} = \frac{u e^{4 u}}{8} - \frac{{\color{red}{\left(\frac{\int{e^{v} d v}}{4}\right)}}}{8}$$
지수 함수의 적분은 $$$\int{e^{v} d v} = e^{v}$$$입니다:
$$\frac{u e^{4 u}}{8} - \frac{{\color{red}{\int{e^{v} d v}}}}{32} = \frac{u e^{4 u}}{8} - \frac{{\color{red}{e^{v}}}}{32}$$
다음 $$$v=4 u$$$을 기억하라:
$$\frac{u e^{4 u}}{8} - \frac{e^{{\color{red}{v}}}}{32} = \frac{u e^{4 u}}{8} - \frac{e^{{\color{red}{\left(4 u\right)}}}}{32}$$
다음 $$$u=x^{2}$$$을 기억하라:
$$- \frac{e^{4 {\color{red}{u}}}}{32} + \frac{{\color{red}{u}} e^{4 {\color{red}{u}}}}{8} = - \frac{e^{4 {\color{red}{x^{2}}}}}{32} + \frac{{\color{red}{x^{2}}} e^{4 {\color{red}{x^{2}}}}}{8}$$
따라서,
$$\int{x^{3} e^{4 x^{2}} d x} = \frac{x^{2} e^{4 x^{2}}}{8} - \frac{e^{4 x^{2}}}{32}$$
간단히 하시오:
$$\int{x^{3} e^{4 x^{2}} d x} = \frac{\left(4 x^{2} - 1\right) e^{4 x^{2}}}{32}$$
적분 상수를 추가하세요:
$$\int{x^{3} e^{4 x^{2}} d x} = \frac{\left(4 x^{2} - 1\right) e^{4 x^{2}}}{32}+C$$
정답
$$$\int x^{3} e^{4 x^{2}}\, dx = \frac{\left(4 x^{2} - 1\right) e^{4 x^{2}}}{32} + C$$$A