$$$x^{3} e^{4 x^{2}}$$$ 的积分

该计算器将求出$$$x^{3} e^{4 x^{2}}$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int x^{3} e^{4 x^{2}}\, dx$$$

解答

$$$u=x^{2}$$$

$$$du=\left(x^{2}\right)^{\prime }dx = 2 x dx$$$ (步骤见»),并有$$$x dx = \frac{du}{2}$$$

该积分可以改写为

$${\color{red}{\int{x^{3} e^{4 x^{2}} d x}}} = {\color{red}{\int{\frac{u e^{4 u}}{2} d u}}}$$

$$$c=\frac{1}{2}$$$$$$f{\left(u \right)} = u e^{4 u}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$

$${\color{red}{\int{\frac{u e^{4 u}}{2} d u}}} = {\color{red}{\left(\frac{\int{u e^{4 u} d u}}{2}\right)}}$$

对于积分$$$\int{u e^{4 u} d u}$$$,使用分部积分法$$$\int \operatorname{m} \operatorname{dv} = \operatorname{m}\operatorname{v} - \int \operatorname{v} \operatorname{dm}$$$

$$$\operatorname{m}=u$$$$$$\operatorname{dv}=e^{4 u} du$$$

$$$\operatorname{dm}=\left(u\right)^{\prime }du=1 du$$$ (步骤见 »),并且 $$$\operatorname{v}=\int{e^{4 u} d u}=\frac{e^{4 u}}{4}$$$ (步骤见 »)。

因此,

$$\frac{{\color{red}{\int{u e^{4 u} d u}}}}{2}=\frac{{\color{red}{\left(u \cdot \frac{e^{4 u}}{4}-\int{\frac{e^{4 u}}{4} \cdot 1 d u}\right)}}}{2}=\frac{{\color{red}{\left(\frac{u e^{4 u}}{4} - \int{\frac{e^{4 u}}{4} d u}\right)}}}{2}$$

$$$c=\frac{1}{4}$$$$$$f{\left(u \right)} = e^{4 u}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$

$$\frac{u e^{4 u}}{8} - \frac{{\color{red}{\int{\frac{e^{4 u}}{4} d u}}}}{2} = \frac{u e^{4 u}}{8} - \frac{{\color{red}{\left(\frac{\int{e^{4 u} d u}}{4}\right)}}}{2}$$

$$$v=4 u$$$

$$$dv=\left(4 u\right)^{\prime }du = 4 du$$$ (步骤见»),并有$$$du = \frac{dv}{4}$$$

所以,

$$\frac{u e^{4 u}}{8} - \frac{{\color{red}{\int{e^{4 u} d u}}}}{8} = \frac{u e^{4 u}}{8} - \frac{{\color{red}{\int{\frac{e^{v}}{4} d v}}}}{8}$$

$$$c=\frac{1}{4}$$$$$$f{\left(v \right)} = e^{v}$$$ 应用常数倍法则 $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$

$$\frac{u e^{4 u}}{8} - \frac{{\color{red}{\int{\frac{e^{v}}{4} d v}}}}{8} = \frac{u e^{4 u}}{8} - \frac{{\color{red}{\left(\frac{\int{e^{v} d v}}{4}\right)}}}{8}$$

指数函数的积分为 $$$\int{e^{v} d v} = e^{v}$$$

$$\frac{u e^{4 u}}{8} - \frac{{\color{red}{\int{e^{v} d v}}}}{32} = \frac{u e^{4 u}}{8} - \frac{{\color{red}{e^{v}}}}{32}$$

回忆一下 $$$v=4 u$$$:

$$\frac{u e^{4 u}}{8} - \frac{e^{{\color{red}{v}}}}{32} = \frac{u e^{4 u}}{8} - \frac{e^{{\color{red}{\left(4 u\right)}}}}{32}$$

回忆一下 $$$u=x^{2}$$$:

$$- \frac{e^{4 {\color{red}{u}}}}{32} + \frac{{\color{red}{u}} e^{4 {\color{red}{u}}}}{8} = - \frac{e^{4 {\color{red}{x^{2}}}}}{32} + \frac{{\color{red}{x^{2}}} e^{4 {\color{red}{x^{2}}}}}{8}$$

因此,

$$\int{x^{3} e^{4 x^{2}} d x} = \frac{x^{2} e^{4 x^{2}}}{8} - \frac{e^{4 x^{2}}}{32}$$

化简:

$$\int{x^{3} e^{4 x^{2}} d x} = \frac{\left(4 x^{2} - 1\right) e^{4 x^{2}}}{32}$$

加上积分常数:

$$\int{x^{3} e^{4 x^{2}} d x} = \frac{\left(4 x^{2} - 1\right) e^{4 x^{2}}}{32}+C$$

答案

$$$\int x^{3} e^{4 x^{2}}\, dx = \frac{\left(4 x^{2} - 1\right) e^{4 x^{2}}}{32} + C$$$A


Please try a new game Rotatly