Integraal van $$$- 2 \csc^{3}{\left(x \right)} + \sec^{2}{\left(x \right)} - 1$$$

De calculator zal de integraal/primitieve functie van $$$- 2 \csc^{3}{\left(x \right)} + \sec^{2}{\left(x \right)} - 1$$$ bepalen, waarbij de stappen worden weergegeven.

Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen

Schrijf alstublieft zonder differentiëlen zoals $$$dx$$$, $$$dy$$$, enz.
Leeg laten voor automatische detectie.

Als de rekenmachine iets niet heeft berekend, als u een fout hebt ontdekt of als u een suggestie/feedback hebt, neem dan contact met ons op.

Uw invoer

Bepaal $$$\int \left(- 2 \csc^{3}{\left(x \right)} + \sec^{2}{\left(x \right)} - 1\right)\, dx$$$.

Oplossing

Integreer termgewijs:

$${\color{red}{\int{\left(- 2 \csc^{3}{\left(x \right)} + \sec^{2}{\left(x \right)} - 1\right)d x}}} = {\color{red}{\left(- \int{1 d x} - \int{2 \csc^{3}{\left(x \right)} d x} + \int{\sec^{2}{\left(x \right)} d x}\right)}}$$

Pas de constantenregel $$$\int c\, dx = c x$$$ toe met $$$c=1$$$:

$$- \int{2 \csc^{3}{\left(x \right)} d x} + \int{\sec^{2}{\left(x \right)} d x} - {\color{red}{\int{1 d x}}} = - \int{2 \csc^{3}{\left(x \right)} d x} + \int{\sec^{2}{\left(x \right)} d x} - {\color{red}{x}}$$

De integraal van $$$\sec^{2}{\left(x \right)}$$$ is $$$\int{\sec^{2}{\left(x \right)} d x} = \tan{\left(x \right)}$$$:

$$- x - \int{2 \csc^{3}{\left(x \right)} d x} + {\color{red}{\int{\sec^{2}{\left(x \right)} d x}}} = - x - \int{2 \csc^{3}{\left(x \right)} d x} + {\color{red}{\tan{\left(x \right)}}}$$

Pas de constante-veelvoudregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ toe met $$$c=2$$$ en $$$f{\left(x \right)} = \csc^{3}{\left(x \right)}$$$:

$$- x + \tan{\left(x \right)} - {\color{red}{\int{2 \csc^{3}{\left(x \right)} d x}}} = - x + \tan{\left(x \right)} - {\color{red}{\left(2 \int{\csc^{3}{\left(x \right)} d x}\right)}}$$

Voor de integraal $$$\int{\csc^{3}{\left(x \right)} d x}$$$, gebruik partiële integratie $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.

Zij $$$\operatorname{u}=\csc{\left(x \right)}$$$ en $$$\operatorname{dv}=\csc^{2}{\left(x \right)} dx$$$.

Dan $$$\operatorname{du}=\left(\csc{\left(x \right)}\right)^{\prime }dx=- \cot{\left(x \right)} \csc{\left(x \right)} dx$$$ (de stappen zijn te zien ») en $$$\operatorname{v}=\int{\csc^{2}{\left(x \right)} d x}=- \cot{\left(x \right)}$$$ (de stappen zijn te zien »).

Dus,

$$\int{\csc^{3}{\left(x \right)} d x}=\csc{\left(x \right)} \cdot \left(- \cot{\left(x \right)}\right)-\int{\left(- \cot{\left(x \right)}\right) \cdot \left(- \cot{\left(x \right)} \csc{\left(x \right)}\right) d x}=- \cot{\left(x \right)} \csc{\left(x \right)} - \int{\cot^{2}{\left(x \right)} \csc{\left(x \right)} d x}$$

Pas de formule $$$\cot^{2}{\left(x \right)} = \csc^{2}{\left(x \right)} - 1$$$ toe:

$$- \cot{\left(x \right)} \csc{\left(x \right)} - \int{\cot^{2}{\left(x \right)} \csc{\left(x \right)} d x}=- \cot{\left(x \right)} \csc{\left(x \right)} - \int{\left(\csc^{2}{\left(x \right)} - 1\right) \csc{\left(x \right)} d x}$$

Werk uit:

$$- \cot{\left(x \right)} \csc{\left(x \right)} - \int{\left(\csc^{2}{\left(x \right)} - 1\right) \csc{\left(x \right)} d x}=- \cot{\left(x \right)} \csc{\left(x \right)} - \int{\left(\csc^{3}{\left(x \right)} - \csc{\left(x \right)}\right)d x}$$

De integraal van een verschil is het verschil van integralen:

$$- \cot{\left(x \right)} \csc{\left(x \right)} - \int{\left(\csc^{3}{\left(x \right)} - \csc{\left(x \right)}\right)d x}=- \cot{\left(x \right)} \csc{\left(x \right)} + \int{\csc{\left(x \right)} d x} - \int{\csc^{3}{\left(x \right)} d x}$$

Dus krijgen we de volgende eenvoudige lineaire vergelijking met betrekking tot de integraal:

$${\color{red}{\int{\csc^{3}{\left(x \right)} d x}}}=- \cot{\left(x \right)} \csc{\left(x \right)} + \int{\csc{\left(x \right)} d x} - {\color{red}{\int{\csc^{3}{\left(x \right)} d x}}}$$

Door het op te lossen, verkrijgen we dat

$$\int{\csc^{3}{\left(x \right)} d x}=- \frac{\cot{\left(x \right)} \csc{\left(x \right)}}{2} + \frac{\int{\csc{\left(x \right)} d x}}{2}$$

Dus,

$$- x + \tan{\left(x \right)} - 2 {\color{red}{\int{\csc^{3}{\left(x \right)} d x}}} = - x + \tan{\left(x \right)} - 2 {\color{red}{\left(- \frac{\cot{\left(x \right)} \csc{\left(x \right)}}{2} + \frac{\int{\csc{\left(x \right)} d x}}{2}\right)}}$$

Herschrijf de cosecans als $$$\csc\left(x\right)=\frac{1}{\sin\left(x\right)}$$$:

$$- x + \tan{\left(x \right)} + \cot{\left(x \right)} \csc{\left(x \right)} - {\color{red}{\int{\csc{\left(x \right)} d x}}} = - x + \tan{\left(x \right)} + \cot{\left(x \right)} \csc{\left(x \right)} - {\color{red}{\int{\frac{1}{\sin{\left(x \right)}} d x}}}$$

Herschrijf de sinus met behulp van de formule voor de dubbele hoek $$$\sin\left(x\right)=2\sin\left(\frac{x}{2}\right)\cos\left(\frac{x}{2}\right)$$$:

$$- x + \tan{\left(x \right)} + \cot{\left(x \right)} \csc{\left(x \right)} - {\color{red}{\int{\frac{1}{\sin{\left(x \right)}} d x}}} = - x + \tan{\left(x \right)} + \cot{\left(x \right)} \csc{\left(x \right)} - {\color{red}{\int{\frac{1}{2 \sin{\left(\frac{x}{2} \right)} \cos{\left(\frac{x}{2} \right)}} d x}}}$$

Vermenigvuldig de teller en de noemer met $$$\sec^2\left(\frac{x}{2} \right)$$$:

$$- x + \tan{\left(x \right)} + \cot{\left(x \right)} \csc{\left(x \right)} - {\color{red}{\int{\frac{1}{2 \sin{\left(\frac{x}{2} \right)} \cos{\left(\frac{x}{2} \right)}} d x}}} = - x + \tan{\left(x \right)} + \cot{\left(x \right)} \csc{\left(x \right)} - {\color{red}{\int{\frac{\sec^{2}{\left(\frac{x}{2} \right)}}{2 \tan{\left(\frac{x}{2} \right)}} d x}}}$$

Zij $$$u=\tan{\left(\frac{x}{2} \right)}$$$.

Dan $$$du=\left(\tan{\left(\frac{x}{2} \right)}\right)^{\prime }dx = \frac{\sec^{2}{\left(\frac{x}{2} \right)}}{2} dx$$$ (de stappen zijn te zien »), en dan geldt dat $$$\sec^{2}{\left(\frac{x}{2} \right)} dx = 2 du$$$.

De integraal kan worden herschreven als

$$- x + \tan{\left(x \right)} + \cot{\left(x \right)} \csc{\left(x \right)} - {\color{red}{\int{\frac{\sec^{2}{\left(\frac{x}{2} \right)}}{2 \tan{\left(\frac{x}{2} \right)}} d x}}} = - x + \tan{\left(x \right)} + \cot{\left(x \right)} \csc{\left(x \right)} - {\color{red}{\int{\frac{1}{u} d u}}}$$

De integraal van $$$\frac{1}{u}$$$ is $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$- x + \tan{\left(x \right)} + \cot{\left(x \right)} \csc{\left(x \right)} - {\color{red}{\int{\frac{1}{u} d u}}} = - x + \tan{\left(x \right)} + \cot{\left(x \right)} \csc{\left(x \right)} - {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$

We herinneren eraan dat $$$u=\tan{\left(\frac{x}{2} \right)}$$$:

$$- x - \ln{\left(\left|{{\color{red}{u}}}\right| \right)} + \tan{\left(x \right)} + \cot{\left(x \right)} \csc{\left(x \right)} = - x - \ln{\left(\left|{{\color{red}{\tan{\left(\frac{x}{2} \right)}}}}\right| \right)} + \tan{\left(x \right)} + \cot{\left(x \right)} \csc{\left(x \right)}$$

Dus,

$$\int{\left(- 2 \csc^{3}{\left(x \right)} + \sec^{2}{\left(x \right)} - 1\right)d x} = - x - \ln{\left(\left|{\tan{\left(\frac{x}{2} \right)}}\right| \right)} + \tan{\left(x \right)} + \cot{\left(x \right)} \csc{\left(x \right)}$$

Voeg de integratieconstante toe:

$$\int{\left(- 2 \csc^{3}{\left(x \right)} + \sec^{2}{\left(x \right)} - 1\right)d x} = - x - \ln{\left(\left|{\tan{\left(\frac{x}{2} \right)}}\right| \right)} + \tan{\left(x \right)} + \cot{\left(x \right)} \csc{\left(x \right)}+C$$

Antwoord

$$$\int \left(- 2 \csc^{3}{\left(x \right)} + \sec^{2}{\left(x \right)} - 1\right)\, dx = \left(- x - \ln\left(\left|{\tan{\left(\frac{x}{2} \right)}}\right|\right) + \tan{\left(x \right)} + \cot{\left(x \right)} \csc{\left(x \right)}\right) + C$$$A


Please try a new game Rotatly