$$$- 2 \csc^{3}{\left(x \right)} + \sec^{2}{\left(x \right)} - 1$$$ 的積分
相關計算器: 定積分與廣義積分計算器
您的輸入
求$$$\int \left(- 2 \csc^{3}{\left(x \right)} + \sec^{2}{\left(x \right)} - 1\right)\, dx$$$。
解答
逐項積分:
$${\color{red}{\int{\left(- 2 \csc^{3}{\left(x \right)} + \sec^{2}{\left(x \right)} - 1\right)d x}}} = {\color{red}{\left(- \int{1 d x} - \int{2 \csc^{3}{\left(x \right)} d x} + \int{\sec^{2}{\left(x \right)} d x}\right)}}$$
配合 $$$c=1$$$,應用常數法則 $$$\int c\, dx = c x$$$:
$$- \int{2 \csc^{3}{\left(x \right)} d x} + \int{\sec^{2}{\left(x \right)} d x} - {\color{red}{\int{1 d x}}} = - \int{2 \csc^{3}{\left(x \right)} d x} + \int{\sec^{2}{\left(x \right)} d x} - {\color{red}{x}}$$
$$$\sec^{2}{\left(x \right)}$$$ 的積分是 $$$\int{\sec^{2}{\left(x \right)} d x} = \tan{\left(x \right)}$$$:
$$- x - \int{2 \csc^{3}{\left(x \right)} d x} + {\color{red}{\int{\sec^{2}{\left(x \right)} d x}}} = - x - \int{2 \csc^{3}{\left(x \right)} d x} + {\color{red}{\tan{\left(x \right)}}}$$
套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=2$$$ 與 $$$f{\left(x \right)} = \csc^{3}{\left(x \right)}$$$:
$$- x + \tan{\left(x \right)} - {\color{red}{\int{2 \csc^{3}{\left(x \right)} d x}}} = - x + \tan{\left(x \right)} - {\color{red}{\left(2 \int{\csc^{3}{\left(x \right)} d x}\right)}}$$
對於積分 $$$\int{\csc^{3}{\left(x \right)} d x}$$$,使用分部積分法 $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$。
令 $$$\operatorname{u}=\csc{\left(x \right)}$$$ 與 $$$\operatorname{dv}=\csc^{2}{\left(x \right)} dx$$$。
則 $$$\operatorname{du}=\left(\csc{\left(x \right)}\right)^{\prime }dx=- \cot{\left(x \right)} \csc{\left(x \right)} dx$$$(步驟見 »),且 $$$\operatorname{v}=\int{\csc^{2}{\left(x \right)} d x}=- \cot{\left(x \right)}$$$(步驟見 »)。
所以,
$$\int{\csc^{3}{\left(x \right)} d x}=\csc{\left(x \right)} \cdot \left(- \cot{\left(x \right)}\right)-\int{\left(- \cot{\left(x \right)}\right) \cdot \left(- \cot{\left(x \right)} \csc{\left(x \right)}\right) d x}=- \cot{\left(x \right)} \csc{\left(x \right)} - \int{\cot^{2}{\left(x \right)} \csc{\left(x \right)} d x}$$
套用公式 $$$\cot^{2}{\left(x \right)} = \csc^{2}{\left(x \right)} - 1$$$:
$$- \cot{\left(x \right)} \csc{\left(x \right)} - \int{\cot^{2}{\left(x \right)} \csc{\left(x \right)} d x}=- \cot{\left(x \right)} \csc{\left(x \right)} - \int{\left(\csc^{2}{\left(x \right)} - 1\right) \csc{\left(x \right)} d x}$$
展開:
$$- \cot{\left(x \right)} \csc{\left(x \right)} - \int{\left(\csc^{2}{\left(x \right)} - 1\right) \csc{\left(x \right)} d x}=- \cot{\left(x \right)} \csc{\left(x \right)} - \int{\left(\csc^{3}{\left(x \right)} - \csc{\left(x \right)}\right)d x}$$
差的積分等於積分之差:
$$- \cot{\left(x \right)} \csc{\left(x \right)} - \int{\left(\csc^{3}{\left(x \right)} - \csc{\left(x \right)}\right)d x}=- \cot{\left(x \right)} \csc{\left(x \right)} + \int{\csc{\left(x \right)} d x} - \int{\csc^{3}{\left(x \right)} d x}$$
因此,我們得到關於該積分的下列簡單線性方程:
$${\color{red}{\int{\csc^{3}{\left(x \right)} d x}}}=- \cot{\left(x \right)} \csc{\left(x \right)} + \int{\csc{\left(x \right)} d x} - {\color{red}{\int{\csc^{3}{\left(x \right)} d x}}}$$
解得
$$\int{\csc^{3}{\left(x \right)} d x}=- \frac{\cot{\left(x \right)} \csc{\left(x \right)}}{2} + \frac{\int{\csc{\left(x \right)} d x}}{2}$$
因此,
$$- x + \tan{\left(x \right)} - 2 {\color{red}{\int{\csc^{3}{\left(x \right)} d x}}} = - x + \tan{\left(x \right)} - 2 {\color{red}{\left(- \frac{\cot{\left(x \right)} \csc{\left(x \right)}}{2} + \frac{\int{\csc{\left(x \right)} d x}}{2}\right)}}$$
將餘割改寫為 $$$\csc\left(x\right)=\frac{1}{\sin\left(x\right)}$$$:
$$- x + \tan{\left(x \right)} + \cot{\left(x \right)} \csc{\left(x \right)} - {\color{red}{\int{\csc{\left(x \right)} d x}}} = - x + \tan{\left(x \right)} + \cot{\left(x \right)} \csc{\left(x \right)} - {\color{red}{\int{\frac{1}{\sin{\left(x \right)}} d x}}}$$
使用倍角公式 $$$\sin\left(x\right)=2\sin\left(\frac{x}{2}\right)\cos\left(\frac{x}{2}\right)$$$ 重寫正弦:
$$- x + \tan{\left(x \right)} + \cot{\left(x \right)} \csc{\left(x \right)} - {\color{red}{\int{\frac{1}{\sin{\left(x \right)}} d x}}} = - x + \tan{\left(x \right)} + \cot{\left(x \right)} \csc{\left(x \right)} - {\color{red}{\int{\frac{1}{2 \sin{\left(\frac{x}{2} \right)} \cos{\left(\frac{x}{2} \right)}} d x}}}$$
將分子與分母同時乘以 $$$\sec^2\left(\frac{x}{2} \right)$$$:
$$- x + \tan{\left(x \right)} + \cot{\left(x \right)} \csc{\left(x \right)} - {\color{red}{\int{\frac{1}{2 \sin{\left(\frac{x}{2} \right)} \cos{\left(\frac{x}{2} \right)}} d x}}} = - x + \tan{\left(x \right)} + \cot{\left(x \right)} \csc{\left(x \right)} - {\color{red}{\int{\frac{\sec^{2}{\left(\frac{x}{2} \right)}}{2 \tan{\left(\frac{x}{2} \right)}} d x}}}$$
令 $$$u=\tan{\left(\frac{x}{2} \right)}$$$。
則 $$$du=\left(\tan{\left(\frac{x}{2} \right)}\right)^{\prime }dx = \frac{\sec^{2}{\left(\frac{x}{2} \right)}}{2} dx$$$ (步驟見»),並可得 $$$\sec^{2}{\left(\frac{x}{2} \right)} dx = 2 du$$$。
因此,
$$- x + \tan{\left(x \right)} + \cot{\left(x \right)} \csc{\left(x \right)} - {\color{red}{\int{\frac{\sec^{2}{\left(\frac{x}{2} \right)}}{2 \tan{\left(\frac{x}{2} \right)}} d x}}} = - x + \tan{\left(x \right)} + \cot{\left(x \right)} \csc{\left(x \right)} - {\color{red}{\int{\frac{1}{u} d u}}}$$
$$$\frac{1}{u}$$$ 的積分是 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$- x + \tan{\left(x \right)} + \cot{\left(x \right)} \csc{\left(x \right)} - {\color{red}{\int{\frac{1}{u} d u}}} = - x + \tan{\left(x \right)} + \cot{\left(x \right)} \csc{\left(x \right)} - {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$
回顧一下 $$$u=\tan{\left(\frac{x}{2} \right)}$$$:
$$- x - \ln{\left(\left|{{\color{red}{u}}}\right| \right)} + \tan{\left(x \right)} + \cot{\left(x \right)} \csc{\left(x \right)} = - x - \ln{\left(\left|{{\color{red}{\tan{\left(\frac{x}{2} \right)}}}}\right| \right)} + \tan{\left(x \right)} + \cot{\left(x \right)} \csc{\left(x \right)}$$
因此,
$$\int{\left(- 2 \csc^{3}{\left(x \right)} + \sec^{2}{\left(x \right)} - 1\right)d x} = - x - \ln{\left(\left|{\tan{\left(\frac{x}{2} \right)}}\right| \right)} + \tan{\left(x \right)} + \cot{\left(x \right)} \csc{\left(x \right)}$$
加上積分常數:
$$\int{\left(- 2 \csc^{3}{\left(x \right)} + \sec^{2}{\left(x \right)} - 1\right)d x} = - x - \ln{\left(\left|{\tan{\left(\frac{x}{2} \right)}}\right| \right)} + \tan{\left(x \right)} + \cot{\left(x \right)} \csc{\left(x \right)}+C$$
答案
$$$\int \left(- 2 \csc^{3}{\left(x \right)} + \sec^{2}{\left(x \right)} - 1\right)\, dx = \left(- x - \ln\left(\left|{\tan{\left(\frac{x}{2} \right)}}\right|\right) + \tan{\left(x \right)} + \cot{\left(x \right)} \csc{\left(x \right)}\right) + C$$$A