Funktion $$$- 2 \csc^{3}{\left(x \right)} + \sec^{2}{\left(x \right)} - 1$$$ integraali

Laskin löytää funktion $$$- 2 \csc^{3}{\left(x \right)} + \sec^{2}{\left(x \right)} - 1$$$ integraalin/alkufunktion ja näyttää vaiheet.

Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin

Kirjoita ilman differentiaaleja kuten $$$dx$$$, $$$dy$$$ jne.
Jätä tyhjäksi automaattista tunnistusta varten.

Jos laskin ei laskenut jotakin tai olet havainnut virheen tai sinulla on ehdotus tai palaute, ole hyvä ja ota meihin yhteyttä.

Syötteesi

Määritä $$$\int \left(- 2 \csc^{3}{\left(x \right)} + \sec^{2}{\left(x \right)} - 1\right)\, dx$$$.

Ratkaisu

Integroi termi kerrallaan:

$${\color{red}{\int{\left(- 2 \csc^{3}{\left(x \right)} + \sec^{2}{\left(x \right)} - 1\right)d x}}} = {\color{red}{\left(- \int{1 d x} - \int{2 \csc^{3}{\left(x \right)} d x} + \int{\sec^{2}{\left(x \right)} d x}\right)}}$$

Sovella vakiosääntöä $$$\int c\, dx = c x$$$ käyttäen $$$c=1$$$:

$$- \int{2 \csc^{3}{\left(x \right)} d x} + \int{\sec^{2}{\left(x \right)} d x} - {\color{red}{\int{1 d x}}} = - \int{2 \csc^{3}{\left(x \right)} d x} + \int{\sec^{2}{\left(x \right)} d x} - {\color{red}{x}}$$

Funktion $$$\sec^{2}{\left(x \right)}$$$ integraali on $$$\int{\sec^{2}{\left(x \right)} d x} = \tan{\left(x \right)}$$$:

$$- x - \int{2 \csc^{3}{\left(x \right)} d x} + {\color{red}{\int{\sec^{2}{\left(x \right)} d x}}} = - x - \int{2 \csc^{3}{\left(x \right)} d x} + {\color{red}{\tan{\left(x \right)}}}$$

Sovella vakiokertoimen sääntöä $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ käyttäen $$$c=2$$$ ja $$$f{\left(x \right)} = \csc^{3}{\left(x \right)}$$$:

$$- x + \tan{\left(x \right)} - {\color{red}{\int{2 \csc^{3}{\left(x \right)} d x}}} = - x + \tan{\left(x \right)} - {\color{red}{\left(2 \int{\csc^{3}{\left(x \right)} d x}\right)}}$$

Integraalin $$$\int{\csc^{3}{\left(x \right)} d x}$$$ kohdalla käytä osittaisintegrointia $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.

Olkoon $$$\operatorname{u}=\csc{\left(x \right)}$$$ ja $$$\operatorname{dv}=\csc^{2}{\left(x \right)} dx$$$.

Tällöin $$$\operatorname{du}=\left(\csc{\left(x \right)}\right)^{\prime }dx=- \cot{\left(x \right)} \csc{\left(x \right)} dx$$$ (vaiheet ovat nähtävissä ») ja $$$\operatorname{v}=\int{\csc^{2}{\left(x \right)} d x}=- \cot{\left(x \right)}$$$ (vaiheet ovat nähtävissä »).

Näin ollen,

$$\int{\csc^{3}{\left(x \right)} d x}=\csc{\left(x \right)} \cdot \left(- \cot{\left(x \right)}\right)-\int{\left(- \cot{\left(x \right)}\right) \cdot \left(- \cot{\left(x \right)} \csc{\left(x \right)}\right) d x}=- \cot{\left(x \right)} \csc{\left(x \right)} - \int{\cot^{2}{\left(x \right)} \csc{\left(x \right)} d x}$$

Sovella kaavaa $$$\cot^{2}{\left(x \right)} = \csc^{2}{\left(x \right)} - 1$$$:

$$- \cot{\left(x \right)} \csc{\left(x \right)} - \int{\cot^{2}{\left(x \right)} \csc{\left(x \right)} d x}=- \cot{\left(x \right)} \csc{\left(x \right)} - \int{\left(\csc^{2}{\left(x \right)} - 1\right) \csc{\left(x \right)} d x}$$

Laajenna:

$$- \cot{\left(x \right)} \csc{\left(x \right)} - \int{\left(\csc^{2}{\left(x \right)} - 1\right) \csc{\left(x \right)} d x}=- \cot{\left(x \right)} \csc{\left(x \right)} - \int{\left(\csc^{3}{\left(x \right)} - \csc{\left(x \right)}\right)d x}$$

Erotuksen integraali on integraalien erotus:

$$- \cot{\left(x \right)} \csc{\left(x \right)} - \int{\left(\csc^{3}{\left(x \right)} - \csc{\left(x \right)}\right)d x}=- \cot{\left(x \right)} \csc{\left(x \right)} + \int{\csc{\left(x \right)} d x} - \int{\csc^{3}{\left(x \right)} d x}$$

Näin saamme seuraavan yksinkertaisen lineaarisen yhtälön integraalin suhteen:

$${\color{red}{\int{\csc^{3}{\left(x \right)} d x}}}=- \cot{\left(x \right)} \csc{\left(x \right)} + \int{\csc{\left(x \right)} d x} - {\color{red}{\int{\csc^{3}{\left(x \right)} d x}}}$$

Ratkaisemalla sen saamme, että

$$\int{\csc^{3}{\left(x \right)} d x}=- \frac{\cot{\left(x \right)} \csc{\left(x \right)}}{2} + \frac{\int{\csc{\left(x \right)} d x}}{2}$$

Näin ollen,

$$- x + \tan{\left(x \right)} - 2 {\color{red}{\int{\csc^{3}{\left(x \right)} d x}}} = - x + \tan{\left(x \right)} - 2 {\color{red}{\left(- \frac{\cot{\left(x \right)} \csc{\left(x \right)}}{2} + \frac{\int{\csc{\left(x \right)} d x}}{2}\right)}}$$

Kirjoita kosekantti uudelleen muodossa $$$\csc\left(x\right)=\frac{1}{\sin\left(x\right)}$$$:

$$- x + \tan{\left(x \right)} + \cot{\left(x \right)} \csc{\left(x \right)} - {\color{red}{\int{\csc{\left(x \right)} d x}}} = - x + \tan{\left(x \right)} + \cot{\left(x \right)} \csc{\left(x \right)} - {\color{red}{\int{\frac{1}{\sin{\left(x \right)}} d x}}}$$

Kirjoita sini uudelleen käyttäen kaksinkertaisen kulman kaavaa $$$\sin\left(x\right)=2\sin\left(\frac{x}{2}\right)\cos\left(\frac{x}{2}\right)$$$:

$$- x + \tan{\left(x \right)} + \cot{\left(x \right)} \csc{\left(x \right)} - {\color{red}{\int{\frac{1}{\sin{\left(x \right)}} d x}}} = - x + \tan{\left(x \right)} + \cot{\left(x \right)} \csc{\left(x \right)} - {\color{red}{\int{\frac{1}{2 \sin{\left(\frac{x}{2} \right)} \cos{\left(\frac{x}{2} \right)}} d x}}}$$

Kerro osoittaja ja nimittäjä luvulla $$$\sec^2\left(\frac{x}{2} \right)$$$:

$$- x + \tan{\left(x \right)} + \cot{\left(x \right)} \csc{\left(x \right)} - {\color{red}{\int{\frac{1}{2 \sin{\left(\frac{x}{2} \right)} \cos{\left(\frac{x}{2} \right)}} d x}}} = - x + \tan{\left(x \right)} + \cot{\left(x \right)} \csc{\left(x \right)} - {\color{red}{\int{\frac{\sec^{2}{\left(\frac{x}{2} \right)}}{2 \tan{\left(\frac{x}{2} \right)}} d x}}}$$

Olkoon $$$u=\tan{\left(\frac{x}{2} \right)}$$$.

Tällöin $$$du=\left(\tan{\left(\frac{x}{2} \right)}\right)^{\prime }dx = \frac{\sec^{2}{\left(\frac{x}{2} \right)}}{2} dx$$$ (vaiheet ovat nähtävissä ») ja saamme, että $$$\sec^{2}{\left(\frac{x}{2} \right)} dx = 2 du$$$.

Integraali muuttuu muotoon

$$- x + \tan{\left(x \right)} + \cot{\left(x \right)} \csc{\left(x \right)} - {\color{red}{\int{\frac{\sec^{2}{\left(\frac{x}{2} \right)}}{2 \tan{\left(\frac{x}{2} \right)}} d x}}} = - x + \tan{\left(x \right)} + \cot{\left(x \right)} \csc{\left(x \right)} - {\color{red}{\int{\frac{1}{u} d u}}}$$

Funktion $$$\frac{1}{u}$$$ integraali on $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$- x + \tan{\left(x \right)} + \cot{\left(x \right)} \csc{\left(x \right)} - {\color{red}{\int{\frac{1}{u} d u}}} = - x + \tan{\left(x \right)} + \cot{\left(x \right)} \csc{\left(x \right)} - {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$

Muista, että $$$u=\tan{\left(\frac{x}{2} \right)}$$$:

$$- x - \ln{\left(\left|{{\color{red}{u}}}\right| \right)} + \tan{\left(x \right)} + \cot{\left(x \right)} \csc{\left(x \right)} = - x - \ln{\left(\left|{{\color{red}{\tan{\left(\frac{x}{2} \right)}}}}\right| \right)} + \tan{\left(x \right)} + \cot{\left(x \right)} \csc{\left(x \right)}$$

Näin ollen,

$$\int{\left(- 2 \csc^{3}{\left(x \right)} + \sec^{2}{\left(x \right)} - 1\right)d x} = - x - \ln{\left(\left|{\tan{\left(\frac{x}{2} \right)}}\right| \right)} + \tan{\left(x \right)} + \cot{\left(x \right)} \csc{\left(x \right)}$$

Lisää integrointivakio:

$$\int{\left(- 2 \csc^{3}{\left(x \right)} + \sec^{2}{\left(x \right)} - 1\right)d x} = - x - \ln{\left(\left|{\tan{\left(\frac{x}{2} \right)}}\right| \right)} + \tan{\left(x \right)} + \cot{\left(x \right)} \csc{\left(x \right)}+C$$

Vastaus

$$$\int \left(- 2 \csc^{3}{\left(x \right)} + \sec^{2}{\left(x \right)} - 1\right)\, dx = \left(- x - \ln\left(\left|{\tan{\left(\frac{x}{2} \right)}}\right|\right) + \tan{\left(x \right)} + \cot{\left(x \right)} \csc{\left(x \right)}\right) + C$$$A


Please try a new game Rotatly